
PyPlC – Towards a Prolog Database
Connectivity for Python

Stefan Bodenlos1, Daniel Weidner1, and Dietmar Seipel2

University of Würzburg, Department of Computer Science,
Am Hubland, D – 97074 Würzburg, Germany

1{stefan.bodenlos,daniel.weidner}@stud-mail.uni-wuerzburg.de
2dietmar.seipel@uni-wuerzburg.de

Abstract. Integrating languages of different programming paradigms
introduces interesting questions and conflicts. In multi–paradigm pro-
gramming, interfaces and data structures must be stated in a way that
is reasonable for both worlds. In this respect, the open database connec-
tivity Odbc is a success story, being today’s standard tool of accessing
relational databases with applications written in mostly any program-
ming language.
In this work, we extend the concepts of Odbc to the integration of
the logic programming language Prolog and present a unified approach
for the intuitive integration of Prolog queries into Python, a popular
imperative programming language. Our tool chain called PyPlC aims
to provide a similar standard for accessing derived facts from the Pro-
log database without side effects. PyPlC contains the Python/Prolog
query language PyPlQL. Together with a specification language based
on Xml Schema, this allows to specify and generate structures in Python
corresponding to facts from Prolog.

Keywords: Prolog· Python· Multi–paradigm Programming · Integra-
tion.

1 Introduction

Integrating different technologies is a common issue in the process of software
development. Often, the program’s logic and data tiers are driven by different
programming paradigms. Either two separate teams design and maintain both
components, or a single team does: the first causes expenditure for coordinating
the teams, the latter complicates the planning process instead of simplifying it.

Python is a universal, multi–paradigm programming language, which is well
known for its simple but nevertheless powerful syntax [11]. Although it is multi–
paradigm, object–orientation can be viewed as one of its characteristics. Python
lacks a support for logic programming. Prolog provides powerful mechanisms and
tools related to deductive databases, some applications are easier to implement
with logic programming, e.g., natural language parsing [9], and in some areas, like
artificial intelligence [3], many solutions have been developed. Because Python

2 Stefan Bodenlos et al.

is a widespread and easy–to–learn language, the integration of Prolog offers an
access to a powerful technology for a large part of software developers.

One way to integrate Prolog in Python is to imitate a Prolog interface in
Python. Lager and Wielemaker have proposed a library called Pengines [7],
which is an infrastructure providing general mechanisms for converting Pro-
log data and handling Prolog non–determinism; it is included in the standard
package for Swi–Prolog 7. Like in Odbc, a client can send a Prolog program to
a thread, that provides the data exchange. After that, the client can send Prolog
queries to the thread, which will respond with a set of answer tuples. Based on
Pengines, the Python module PythonPengines has been proposed [1]. A user can
construct Prolog programs and query terms in Python. Here, a Python user has
to comprehend larger parts of the Prolog syntax and semantics. Moreover, the
instructions are usually not compact, because they need some lines of code to
declare a query step by step.

There is a broad field of applications for Prolog. Here, we focus on its strength
for database management and provide a framework for this specific application.
Many solutions have been proposed, that can establish a connection between Pro-
log and object–oriented programming languages like Python. Often they mainly
aim to establish a connection at all, and the user must have a deep understand-
ing of the language to integrate (in this case Prolog). Also Odbc requires some
knowledge of Sql. Here, we want to go one step further and integrate Prolog
into Python in greater depth. In this new approach, a user can understand and
query a Prolog database using Python concepts only. Thus, knowledge about
Prolog is no prerequisite, nevertheless Prolog can be employed.

The fundamental structure of an object–oriented programming language is
an object. It contains data describing the object, called attributes, as well as op-
erations that manipulate the data and serve as an interface. Each object belongs
to exactly one class, that can be viewed as a description for objects. All objects
of a class share the same properties, except the concrete values of the attributes.
A class can be inherited by another class, meaning that the class extends the
original description. In general, Python follows these principles in a way that
ensures a high level of dynamicity. Especially, the set of attributes of an object
can be dynamically extended even at runtime. Since the object–oriented and the
relational paradigm differ, issues can occur when an object is to be saved in a
relation. This is called object–relational (impedance) mismatch [5]. A solution
for this is an object–relational mapping; that is, an object–oriented program can
access a relational database in an object–oriented manner.

In the present paper we propose a framework, which is more intuitively us-
able in terms of the Python philosophy. We introduce a new approach of such
database connectivities extending the Odbc approach, namely a tool chain called
PyPlC (Python/Prolog Database Connectivity) [2]. It aims to convert Prolog
structures into corresponding, object–oriented structures, which can then easily
be processed in Python. A new intuitive object–oriented query language allows
for a simple way of querying a Prolog database in a Python–like fashion. Py-
PlC translates such requests into Prolog syntax and maps the result back into

PyPlC – Towards a Prolog Database Connectivity for Python 3

Python objects. Instead of realizing such procedures manually by a user, all of
these processes are automatized and customizable by PyPlC . This simplifies
Prolog database integration for Python. PyPlC is inspired by the architecture
of the uniform and object–oriented integration framework CAPJa for Java and
Prolog introduced in [8], but it is a new implementation from scratch with some
new features. The Java tool supports most Prolog systems, and provides semi–
automatized and completely customizable mechanisms for the integration and
a fully automatized mapping from Prolog functors to Java objects; an object–
oriented query language enables queries based on Java syntax and semantics.

The rest of this paper is structured as follows: Section 2 describes how Prolog
facts should be mapped to corresponding Python structures. Section 3 presents
the query language for posing queries to Prolog in Python. Our approach is
discussed shortly in Section 4. Conclusions and future work are given in Section 5.

2 Corresponding Structures in Prolog and Python

As a core for the intuitive access to a Prolog database, PyPlC generates corre-
sponding structures in Python, or more specifically, it maps Prolog functors into
corresponding classes. Thus, PyPlC eases the work for programmers, because
it automatizes this integration process, whereas customization is completely sup-
ported.

The University Database in Prolog. For illustration, we introduce a simple
Prolog database representing a university in Listing 1.1. It contains a functor
student/6 for facts composed of constants and a compound term with the func-
tor address/4. The object–oriented representation of this model is a class struc-
ture, in which every functor is represented by a class, whose attributes represent
the arguments and whose name is derived by the functor’s name (see Figure 1).

Listing 1.1. Part of a Prolog Database Representing a University.

% studen t (Last Name , First Name , Age , Sex ,
% Account Balance ,
% address (S t ree t , Number , City , Post Code)) .

student (’Doe ’ , ’ John ’ , 20 , male , 1000 .00 ,
address (’ Park Avenue ’ , 42 , ’ Duckburg ’ , 12345))

The individual facts of the database are represented by objects of these
classes. PyPlC ’s mapping definition is bijective; therefore, mapping and remap-
ping of facts and objects can be done any number of times without loss of infor-
mation.

4 Stefan Bodenlos et al.

Fig. 1. Class Structure Representing the University Database.

In Python, attributes can be addressed by their names, and in Prolog, ar-
guments can be addressed by their position in the compound term. Because
of that, a mapper defines the association between both components. For each
built–in type, a static mapping is implemented. A mapper transforms the com-
ponents by using either such a mapping definition for built–in types or calls a
mapper (possibly recursively). Thus, the type of the attribute address is the
class Address.

Static and Dynamic Mapping. Our framework offers two types of mappings:
static and dynamic mappings, where these names allude how they are intended to
be used rather than how they operate. The dynamic mapping aims at providing
a straightforward integration of Prolog into Python without any preparatory.
It avoids major changes in PyPlC ’s Python module and only stores necessary
information needed for the mapping process. When using the dynamic mode, the
mapping process is not customizable at all. Thus, every time a Prolog database
is integrated into Python, the representation remains unchanged. This is helpful
if the user is very familiar with the queried Prolog database.

Fig. 2. Dynamically Created Class Structure Representing the University Database.

PyPlC – Towards a Prolog Database Connectivity for Python 5

PyPlC dynamically maps the university sample database of Listing 1.1 into
the class structure given in Figure 2. Here, the name is extended by the arity of
the predicate, because Prolog makes a distinction between predicates of different
arities. In Python, the use of an attribute can easily be understood by its name,
whereas in Prolog there are no such descriptions for components. Hence, PyPlC
cannot extract coherent names for the attributes. Also the association between
classes cannot be generated from a plain Prolog predicate, since the typing comes
from a conversion rather than syntax. The created structure is not user–friendly,
but it offers a simple access to a Prolog database in Python, of which the user
knows all about.

The General Object–Oriented Mapping Notation. The static mapping
resolves these issues, but it requires a description of the Prolog database. Here, we
are planning to use the General Object–Oriented Mapping Notation (Goomn),
an Xml–based notation. For each component of a Prolog structure, it provides a
meaningful name and a generic description of the type. Once a Prolog database
is described in Goomn, it can be mapped in principle to any object–oriented
programming language due to its generic nature; see Listing 1.2 for the Goomn
notation of the example database. The generated class structure in Python is
identical with the opening Figure 1, and obviously it is much more user–friendly
than the dynamically created class structure of Figure 2.

PyPlC creates a mapper class for each mapper and integrates it into the
PyPlC module. By changing the Goomn notation, the mapping process is
completely customizable: for instance, a user can decide whether a component
should be mapped or not. Since one can compile the mapper classes, the pro-
cessing speed can be significantly increased.

The Prolog Mapping Notation. Currently, we are still using an alternative to
Goomn, the Prolog Mapping Notation (Pmn) inspired by [8]. Similar to Goomn,
Pmn aims to provide a description for Prolog functors. Here, the information is
saved into Prolog facts, instead of an external Xml file; see Listing 1.3 for the
Pmn notation of the example database.

Listing 1.3. The Facts for the Predicate student/6 in Pmn Notation.

functor (student , [’ last name ’ , ’ f i r s t n a m e ’ ,
’ age ’ , ’ male ’ , ’ account ba lance ’ , ’ address ’] ,
[s t r , s t r , int , bool , f l o a t , functor (address)]) .

functor (address ,
[’ s t r e e t ’ , ’ number ’ , ’ c i t y ’ , ’ pos t code ’] ,
[s t r , int , s t r , s t r]) .

6 Stefan Bodenlos et al.

Listing 1.2. Xml Schema Notation for the Predicate student/6.

<?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>
<xsd:schema

xmlns:xsd=” h t tp : //www. w3 . org /2001/XMLSchema”
targetNamespace=

” h t tp : //www. db . uni−passau . de/ Un ive r s i ty ”>
<xsd :e l ement name=” Unive r s i ty ” type=”UniInfoType”/>
<xsd:complexType name=” Student ”> . . . </xsd:complexType>

</ xsd:schema>

<xsd:complexType name=” Student ”>
<xsd : sequence>

<xsd :e l ement name=” Last Name” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=” F i r s t Name” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”Age” type=” x s d : i n t e g e r ”/>
<xsd :e l ement name=”Sex” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”Number” type=” x s d : i n t e g e r ”/>
<xsd :e l ement name=” Address ”>

<xsd:complexType>
<xsd : sequence>

<xsd :e l ement name=” S t r e e t ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”Number” type=” x s d : i n t e g e r ”/>
<xsd :e l ement name=” City ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”Post Code” type=” x s d : s t r i n g ”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd :e l ement>
</ xsd : sequence>

</xsd:complexType>

In this case, the Pmn structure of address has to be created first, because the
predicate student references the predicate address. The generated functors con-
sists of the predicate name, the arguments, and the related types. From the
Pmn notation, a Python programmer can immediately understand the structure
of the original Prolog code.

3 The Python/Prolog Query Language

To keep the benefits of the underlying logic programming system, the query
processing and data storage will be completely done by a Prolog interpreter.

We introduce the new Python/Prolog Query Language (PyPlQL), which is
inspired by the query language Jpql of CAPJa. It is an easy–to–learn inter-
nal domain–specific language [4] based on corresponding structures mentioned
above. In simple words, a PyPlQL query is a Python function, whose parame-
ters declare the required objects and the function body describes the conditions

PyPlC – Towards a Prolog Database Connectivity for Python 7

to be fulfilled by a Boolean expression. Such functions are not executed as they
are; instead, they get transmitted to PyPlC translating, passing on to a Prolog
instance and transferring the result into objects.

The syntax is defined in the following Listing 1.4. queryName is the name of
the query and [types] represent the query types and the special query instruc-
tions. A query type is considered to be an object of a generated class according
to the Python syntax, whereby a type hint has to be given for each single query
type. The apparent objects are no actual objects (thus, they do not exist at
running time), instead they declare which objects are required in that query.
constraints defines the conditions the query types have to fulfill. Conditions
can be made by an attribute of any query type or a hard–coded value as well as
every built–in relational or Boolean operators of Python, used in the way they
are permitted according to Python syntax. Additionally one can use brackets to
define the order of evaluation.

Listing 1.4. Definition of a PyPlQL Query

def queryName [types] : c o n s t r a i n t s

A special query instruction is, for example, the omit–expression. If an at-
tribute a of the query type o is declared by an omit={o.a}–expression, then
the attribute a will be ignored during the query processing leading to a faster
execution (see anonymous variable in Prolog). The value for such an attribute
will be set to None. Queries, that omit an attribute, which is later accessed in
the condition of a query, are invalid.

Other special query instructions are the aggregation expressions min(o.a),
max(o.a), avg(o.a), and sum(o.a). They will retrieve the minimum, maximum,
average, or summed values, respectively, of the attribute a of the query type o,
for every group specified by groupBy.

PyPlC can delete all objects matching the constraint of a PyPlQL query,
retrieve all of them, or retrieve just a single object and the other objects gradu-
ally, if requested (see backtracking in Prolog). Alternatively, PyPlC can be
instructed to retrieve the number of matching objects. If an aggregation or
groupBy expression is used in a PyPlQL query, then only all instances ful-
filling the conditions can be retrieved or the number of matching objects. In a
groupBy case, see, e.g., Listing 1.9, the return value is a (nested) Python dictio-
nary, whose keys are the attributes mentioned in the groupBy clause and whose
values are the results. Queries with joins can also be implemented in PyPlQL;
see, e.g., Listing 1.8. This extends the Odbc approach.

3.1 Example Queries in PyPlQL

Assume that a user wants to determine every student of the Prolog university
database whose surname is ’Doe’ and who is at least 18 years old. According to
the created, corresponding class structure, this can be expressed as follows: de-
termine every object of the class Student, whose attribute value for last name

8 Stefan Bodenlos et al.

is equal to ’Doe’, and whose attribute the value for age is greater than or equal
to 18. This is a very natural way of expressing this regarding the object–oriented
programming paradigm. Coming from that way of looking at the problem, it is
easy to formulate the PyPlQL query, see Listing 1.5. In Python, atoms such
as Student should start with capital characters. For a Python programmer, this
query is easier to understand than the corresponding native Prolog code of List-
ing 1.6.

Listing 1.5. PyPlQL Query: Student over 18 with Last Name ’Doe’

def studentQuery1 (s : Student , omit = { s . address }) :
s . last name == ’Doe ’ and s . age >= 18

PyPlC translates the query studentQuery1 from Listing 1.5 to the Prolog
representation of Listing 1.6, which could also be send to a Prolog engine with
Pengines.

Listing 1.6. Generated Prolog Representation of the Student Query

Name = ’Doe ’ ,
s tudent (Name, Age , C, D, E,) ,
Age >= 18 .

The transformed return value is a set containing the single student of the univer-
sity database, see Listing 1.7 (where Student and Address have been indented
in Prolog style for readability, other than it would be in Python).

Listing 1.7. Result of the Example Query in Python

r e s u l t = [
Student (’Doe ’ , ’ John ’ , 20 , male , 1000 .00 ,

Address (’ Park Avenue ’ , 42 , ’ Duckburg ’ , 12345))]

Another example query computes two students living in the same street. This
can be expressed like in Listing 1.8.

Listing 1.8. PyPlQL Query: Two Students Living in the Same Street

def studentQuery2 (s1 : Student , s2 : Student) :
s1 . address . s t r e e t == s2 . address . s t r e e t

The number of students grouped by cities can be retrieved by a query like in
Listing 1.9. I.e., PyPlQL includes aggregation and grouping.

Listing 1.9. PyPlQL Query: Number of Students Grouped by Cities

def studentQuery3
(s : Student , groupBy = [s . address . c i t y]) : pass

PyPlC – Towards a Prolog Database Connectivity for Python 9

3.2 Case Study: Querying and Result Processing in Python

In the case study of Listing 1.10, we want to demonstrate how a user can query
the university data base step by step in order to print (result processing) infor-
mation of students living in New York.

Listing 1.10. Case Study in Python: Querying Prolog

1 # Create an ins tance o f Cappy
2 cappy = Cappy(’ sw ip l ’)
3
4 # Import the un i v e r s i t y Prolog database
5 # and i t s scheme
6 cappy . import database (’ un ive ry i ty db . p l ’ ,
7 ’ univeryity db goomn . xml ’)
8
9 # After examining the genera ted c l a s s e s ,

10 # the user can de f i n e the query
11 def s tudent query (s : Student) :
12 s . address . c i t y == ’ Duckburg ’
13 # and query the Prolog database
14 r e s = cappy . r e t r i e v e A l l (s tudent query)
15
16 # Print a l l r e t r i e v e d s tuden t s
17 for s in r e s :
18 print (
19 ‘Name : ‘+ s . f i r s t n a m e + ‘ ‘ + s . last name +
20 ‘ ; Address : ‘ + s . address . s t r e e t + ‘ , ‘ +
21 s . address . number + ‘ ‘ + s . address . c i t y)
22 # Print output
23 # Name: John Doe ; Address : Park Avenue , 42 . . .

Although PyPlC aims to integrate Prolog from the Python point of view,
it also supports some methods for Prolog experts. First, the user can use the
dynamic mapping module of PyPlC . Second, he can formulate a native Prolog
query and bypass the mapping component of PyPlC completely. In that case,
the command lines 9–14 in the example above, can be replaced like in Listing 1.11
(where student and address have been indented in Prolog style for readability,
other than it would be in Python). Since there are no explicit query types in a
Prolog query, the result is not a student object, but a pre–processed Prolog result.
Therefore, the user has to predict the structure of the result, in order to process
it in Python. The command lines 16–21 in the previous example have to be
changed like in Listing 1.12, since the result list will contain assignments for the
Prolog variables given in the query, like Last name = ’Doe’. Hence, the result
processing becomes much more impractical. However, we consider this variant
as an additional feature of PyPlC , if a user wants to have a direct access to
Prolog; in this case, one might also prefer to use other tools like PythonPengines.

10 Stefan Bodenlos et al.

Listing 1.11. Case Study in Python: Querying Prolog

After examining the generated c l a s s e s ,
the user can de f i n e the query
s tudent que ry pro l og =

‘ student (Last name , First name , , , ,
address (Street , Number , City ,)) ‘

and query the Prolog database
r e s = cappy . r e t r i e v e A l l (

s tudent query pro log , bypass ing = True)

Listing 1.12. Case Study in Python: Processing Prolog Result

Print a l l r e t r i e v e d s tuden t s
for r in r e s :

for a in r :
i f isinstance (a , PrologAssignment) and

a . v a r i a b l e = ’ Last name ’ :
print (’ Last Name : ’ + r . va lue + ’ ; ’)

e l i f isinstance (a , PrologAssignment) and
a . v a r i a b l e = ’ First name ’ :
print (’ F i r s t Name : ’ + r . va lue + ’ ; ’)

e l i f isinstance (a , PrologAssignment) and
a . v a r i a b l e = ’ S t r e e t ’ :
print (’ S t r e e t : ’ + r . va lue + ’ ; ’)

e l i f isinstance (a , PrologAssignment) and
a . v a r i a b l e = ’Number ’ :
print (’Number : ’ + r . va lue + ’ ; ’)

e l i f isinstance (a , PrologAssignment) and
a . v a r i a b l e = ’ City ’ :
print (’ City : ’ + r . va lue + ’ ; ’)

Print output
Last Name: Doe ; F i r s t Name: John ; . . .

4 Discussion

Instead of only offering a Prolog–like interface, PyPlC allows intuitive queries
to a Prolog database using an object–oriented query language. This approach
has a couple of advantages.

PyPlC does not only use Python structures, it also uses them in a natural
way. Especially, no prerequisite knowledge of Prolog is needed. PyPlC is com-
patible with current versions of Swi–Prolog and Python. In principle there is a
support for every Prolog implementation, since PyPlC only uses Iso–Prolog
syntax [6] and includes an abstract layer offering an easy–to–extend interface

PyPlC – Towards a Prolog Database Connectivity for Python 11

for a specific Prolog implementation. But so far, PyPlC only supports Swi–
Prolog. Interchangeability of a specific implementation means a gain of quality
in software development.

The new Xml–based markup language Goomn enables a standardized no-
tation of Prolog functors. A Goomn–notated database can be integrated in any
other programming language, since it only uses a very general syntax. Also non–
notated functors can be available in Python through dynamic mapping, whereas
a user has to use another tool to understand the Prolog database, for example
the visualization module of the system Declare for data and knowledge engineer-
ing [10].

Another way to use PyPlC is to integrate not only deductive databases,
but more complex Prolog libraries enabling a powerful way of calculating. For
instance, the Prolog library ClioPatria [12] offers a convenient access to Rdf
databases. In this way PyPlC also offers an interface to the semantic web.

Also in the Prolog library Declare, there exist extended methods for queries
to relational and deductive databases, cf., e.g.,. the generic aggregation operator
ddbase aggregate, which extends the standard Prolog operator findall by grouping
and user–defined aggregation functions.

5 Conclusions and Future Work

The proposed tool PyPlC offers a new unified and intuitive way for the inte-
gration of Prolog into Python. Derived Prolog facts can be retrieved to Python;
all results for a Prolog query are derived like in deductive databases. Whereas
in deductive databases, derivations usually are bottom–up, they are top–down
here. But, bottom–up derivations can be implemented on the Prolog side, e.g.
using Declare, to ensure termination for more logic programs, such as, e.g., the
ones for cyclic transitive closure queries.

By automatically creating a corresponding Python class structure of a Pro-
log database and by providing a Python–like, object–oriented query language,
PyPlC ensures an easy access to Prolog, where not much prior knowledge of
Prolog is necessary.

This paper describes work in progress. We consider improvements of the new
approach in our future work. It is impossible to create a Prolog database from
Python. Thus, PyPlC is an integration of Prolog into Python, and not vice
versa. Creating objects and mapping them into a relational scheme causes many
problems, and Python users could face unexpected behaviour in such cases.

The PyPlQL syntax should be extended in a way permitting every built–in
Python command to be used for formulating a query. For example, for retrieving
whether a substring is contained in a string, the Python command in is suitable.
A modified PyPlQL query of Listing 1.5 – asking only for surnames containing
the substring ’man’ – can be seen in Listing 1.13.

12 Stefan Bodenlos et al.

Listing 1.13. PyPlQL Query with Substring Condition

def s tudentQuery1 substr (s : Student) :
’man ’ in s . last name and s . age >= 18

In some cases, it is possible to translate a PyPlQL query during compilation,
which would bring a significant speedup of the execution.

There are many fascinating Prolog applications. However, many program-
mers do not use these tools, because there are obstacles in terms of different
paradigms compared to many wide–spread programming languages. PyPlC
aims to spread interest in Prolog. Therefore, it provides a way for Prolog be-
ginners, without getting into Prolog specifics. In order to overcome this entry
barrier, PyPlC generates corresponding structures of a Prolog database in
Python. By using an easy–to–learn query language, a beginner can use Prolog
tools straightforwardly.

Acknowledgements. The authors would like to thank Mirco Lukas and Ludwig
Ostermayer for their helpful suggestions during the master’s thesis of Stefan
Bodenlos, and also Falco Nogatz for his useful comments on an earlier draft of
the paper.

References

1. Ian Andrich. PythonPengines. https://github.com/ian-andrich/

PythonPengines.
2. Stefan Bodenlos. Integration von Prolog und ClioPatria in Python. Master’s thesis,

University of Würzburg, 2017.
3. Ivan Bratko. Prolog programming for artificial intelligence. Pearson Education,

2001.
4. Martin Fowler. Domain–specific languages. Pearson Education, 2010.
5. Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A classi-

fication of object–relational impedance mismatch. pages 36–43, 2009.
6. ISO. https://www.iso.org/standard/21413.html.
7. Torbjörn Lager and Jan Wielemaker. Pengines: Web logic programming made

easy. Theory and Practice of Logic Programming, 14(4–5):539–552, 2014.
8. Ludwig Ostermayer. Integration of Prolog and Java with the connector architecture

CAPJa. PhD thesis, University of Würzburg, 2017.
9. Fernando Pereira and Stuart Shieber. Prolog and natural–language analysis. Mi-

crotome Publishing, 2002.
10. Dietmar Seipel. The Declare developers’ toolkit (Ddk). http://www1.informatik.

uni-wuerzburg.de/database/DisLog/.
11. Guido van Rossum and Python Development Team. The Python language ref-

erence. https://docs.python.org/3/archives/python-3.6.3rc1-docs-pdf-a4.
zip.

12. Jan Wielemaker, Wouter Beek, Michiel Hildebrand, and Jacco van Ossenbruggen.
ClioPatria: A Swi–Prolog infrastructure for the semantic web. Semantic Web,
7(5):529–541, 2016.

https://github.com/ian-andrich/PythonPengines
https://github.com/ian-andrich/PythonPengines
https://www.iso.org/standard/21413.html
http://www1.informatik.uni-wuerzburg.de/database/DisLog/
http://www1.informatik.uni-wuerzburg.de/database/DisLog/
https://docs.python.org/3/archives/python-3.6.3rc1-docs-pdf-a4.zip
https://docs.python.org/3/archives/python-3.6.3rc1-docs-pdf-a4.zip

	PyPlC – Towards a Prolog Database Connectivity for Python

