
Toward a concept of derivation for Prolog

Marija Kulaš

FernUniversität Hagen, Wissensbasierte Systeme, 58084 Hagen, Germany
kulas.marija@online.de

Abstract. The traditional concept of derivation in logic programming
is adapted to meet some needs of implemented systems, such as explicit
backtracking and aggregation of steps. Also, a way to enrich Horn clause
logic with utilities like explicit unification and disjunction, but also cut
or catch/throw, is suggested.

Keywords: built-in predicate, backtracking, big-step derivation, composition-
ality, cut

1 Introduction

This work is motivated by the wish to prove that an operational semantics of
(slightly enriched) pure Prolog is adequate, in the sense of reflecting pure Prolog
computation in a sound and complete way. Faced with such a task, the authors
of an aspiring operational semantics X for (a subset of) Prolog have three ready
options. They may deem X so straightforward that its adequacy seems obvious
(e.g. for pure Prolog with cut [6], for full Prolog both [2] and our previous
approach [9]). If they feel uncomfortable with that, they can prove something,
but what would be “enough”? For example, it may be proved that any logical
consequence of the program, and nothing else, can be derived in X [18]. This
leaves out some operational aspects like the order of answers. Since the advent of
ISO Standard Prolog, there is a third option: to brave its complex definition [5]
and hopefully show correspondence with X , hereby contributing X to the pool
of trusted semantics [17]. What we now suggest is a fourth option: to revisit the
traditional concept of derivation in logic programming, SLD-derivation [11] [1],
and try to make it a bit more accomodating to the needs of implemented logic
programming. On this basis, correspondence to a formal model may be easier to
prove.

SLD-derivations are suitable for claims about Horn clause logic (HCL), but
not if its implementations are concerned, since it cannot express backtracking,
and hence “spent” variables, or the order of answers, or the effect of cut. Also,
it lacks abstraction facilities needed for meta-reasoning, like big step (grouping
of steps) or compositionality with respect to conjunction. Yet, it has been com-
monly used as an operational model not only of HCL but of Prolog as well, e.g.
in program analysis. Not surprisingly, a major impediment to proving properties
was the abundance of freedom: there is freedom of variables (choice of mgu, and

of program clause renaming), and freedom of search (choice of an atom from a
query, and of a program clause from a predicate definition). This has been ap-
proached by some complex notions like “equivalence modulo enhanced variance”
[3]. As an alternative, we suggest a more pragmatic way: to acknowledge that, in
an implemented system, many choices are fixed by algorithms. This way, we still
may not know how the variables are going to be chosen, but we know that it is
in one of a fairly small number of practical ways, obeying certain properties. For
example, classical unification algorithms are renaming-compatible, which allows
constructive versions of the variant lemma suitable for implemented systems.
Such formal claims about logic programming systems or their compilation are
still few and far between, a notable exception being [14].

Last but not least, it would be good to also have a way of accomodating
utilities, usually called built-in predicates, in order to experiment with increas-
ing the subset of Prolog (beyond HCL) that could be handled in a relatively
intuitive yet formal way. For example, disjunction, implicit unification and truth
values are obvious candidates, and utilities affecting search like “cut” could profit
from a concise definition. Ideally, a refurbished concept of derivation should be
reasonably obvious, to be trustworthy without the need for a proof.

1.1 Overview of the paper

For the most part we concentrate on enriched pure Prolog called Pure∗. We
start with a subset of HCL called HCL∗, its syntax and proof method (Sec-
tion 2). Next we consider restrictions due to implementation, turning HCL∗ into
a programming language, Pure∗, and propose a small-step concept of top-level
derivation for Pure∗, including backtracking (Section 3).

Next we attempt a big-step concept, based on query context (Section 4). In
Subsection 4.1, backtracking is captured by means of residual, giving n-th an-
swer. In Subsection 4.2, the missing transitivity of the path relation and the miss-
ing compositionality of answers are alleviated using preface of spent variables,
so that computing a conjunction can be reduced to computing the conjuncts
(Theorem 26). This bridges the gap between a traditional SLD-derivation that
is rather devoid of structure, and a compositional formal semantics. A big-step
version of variant lemma is sugested (Theorem 28).

Finally, in Section 5 it is shown how further utilities like cut or catch/throw
could be added.

1.2 Notation

As a visual aid, the first defining mention of a symbol or concept shall be shown
in blue. In Prolog, everything is a term, and so shall term be here the topmost
syntactic concept. Terms are built in the usual way starting from two disjoint
sets: a countably infinite set V of variables and a set Fun of functors. Associated
with every functor f is one or more natural numbers n denoting its possible
number of arguments, arity; for disambiguation, the notation f /n may be used,
which is also the outline of the term f(t1, ..., tn). If s occurs within t, we write

2

s ∈̊ t. A list of n elements t1, ..., tn is written as [t1, ..., tn]. The empty list is
written as []. The set of variables in t is Vars(t). A term without variables is
a ground term. If r is obtained from s by replacing its variables in order of
appearance with t1, ..., tn, we write r = s[t1, ..., tn]. A substitution is a mapping
of variables on terms which is identity almost everywhere. If everywhere, it is
denoted ε. A substitution σ is represented by its finite set of non-identity bindings

as
(

x1

σ(x1)
...
...

xn

σ(xn)

)
, and σ(t) is an instance of t. A renaming ρ is a substitution

represented by a permutation; ρ(t) is a variant of t. The set of most general
unifiers (mgus) of an equation E is denoted MguSet(E). Finally, nothing (or
void) is denoted as �, anything as and impossibility as ⊥.

2 Modifying HCL toward HCL∗ and beyond

2.1 The syntax

In the course of enriching Prolog with ever more utilities (by means of re-
served functors), like disjunction, unification or cut, the original syntax of HCL
was stretched to accomodate those as well. As a result, mathematical meaning
of “predicate” (logical relation) and “predication” (atomic sentence) has been
blurred to a large extent, and logical connectives have been lost. This happened
in two ways. First, by considering every reserved functor as a predicate, even a
conjunction [5]. Second, by defining predication to be anything but variable or
number, so it may even be a clause [4].

Indeed, there does not seem to be an easy way to merge utilities into logic.
As a compromise, we suggest to consider only conjunction and clause-building
as structural functors, and all other reserved functors as built-in predicates.

More formally, assume a set P ⊆ Fun whose members shall be called pred-
icates. A term whose outline is a predicate shall be called a predication. Apart
from predicates, Fun includes structural outlines, consisting of conjunction and
reversed implication, Str ··= {’,’/2, ’:-’/2}. A term with outline in Str is a
structured logical term, which makes a predication unstructured, a mere atom.
Thus, only conjunction and reversed implication are deemed connectives. Any
utility we might add, like disjunction, shall be seen as restricting the choice of
user-definable atom, since reserved functors cannot be redefined. So, extending
the language with reserved functors can be seen as restricting Horn clauses.

Definition 1 (HCL∗). BiP∗ ··= {true/0, fail/0, true/1, ’=’/2, ’;’/2}
are built-in predicates of HCL∗. A user-definable atom, for short uatom, is an
atom whose outline is not in BiP∗. A built-in atom is any other atom. A HCL∗

program is a set of program clauses, defined in Figure 1.

Alongside true/0, there is a version with one dummy argument, true/1
(from an old Quintus Prolog package true.pl). A use for true(t) is to hold
variables of the term t, similarly to the epsoid εt in [8]. Following [1], we leave
out the negation prefix of queries. A fixed HCL∗ program is assumed.

3

〈HCL∗ clause〉 ::= 〈program clause〉 | 〈query〉
〈program clause〉 ::= 〈uatom〉. | 〈uatom〉 :- 〈qf 〉.

〈query〉 ::= 〈qf 〉
〈qf 〉 ::= 〈atom〉 | 〈atom〉, 〈qf 〉

〈atom〉 ::= 〈uatom〉 | true | fail | true(〈qf 〉) | 〈term〉 = 〈term〉 | 〈qf 〉; 〈qf 〉

Fig. 1. Syntax of HCL∗

In a pragmatical deviation from the original meaning of clauses, we treat
program clauses as fixed terms, having their variables chosen by the programmer,
so a renamed program clause is not a program clause any more, but a variant
of one. As a visual help, program clauses shall be written with a hat, like K̂.

2.2 The proof method

Can utilities be handled with the proof method of HCL, consisting of the resolu-
tion rule [15]? One idea is, if we can define a predicate in HCL, we can use it to
extend HCL as well. Resolution rule derives from ∀(¬(A′ ∧B)) and ∀(A′′ ∨¬C)
the formula ∀(¬(σ(C) ∧ σ(B))), where σ ∈ MguSet(A′=A′′) and A′, A′′, B,C
are arbitrary. In HCL A′, A′′ are uatoms and B,C are conjunctions of uatoms,
but there is nothing to preclude built-in atoms (like disjunction). Thus, we can
build the predicate in HCL. As shown in [19], every computable function can be
defined in HCL. So at least in theory many experiments are imaginable. Some of
them are easy, like emulating truth values, unification and disjunction, as shown
in Listing 1.1. Clearly, fail is emulated by omission.

true. true(_). X=X. X;Y :- X. X;Y :- Y.

Listing 1.1. Embedding HCL∗ in HCL

Emulating cut (and other utilities which affect backtracking) in HCL is bound
to be less readable, here we resort to a meta-functor Back. Thus, the proposed
proof method for HCL∗ consists in resolution customized for utilities, plus cus-
tomized rules for Back where backtracking has been affected.

Technically, to resolve built-in atoms, we shall separate the two parts of
resolution: the replacing of an uatom A′ with σ(C), and the joining of the re-
placement with the (now suitably instantiated) rest of the original query, σ(B).
Let us call the former step reduction.

Definition 2 (reduction of uatom). We say that a uatom A can be reduced
to σ(B) with score K:σ, written as A BK:σ σ(B), if K = (H:-B) is a variant of
a program clause K̂, such that σ ∈ MguSet(H=A). A score can be applied on a
term by (: σ)(t) ··= σ(t).

For built-in atoms, we define reduction by the following rules using a ground
term k called the pseudo program clause, and the pseudo score o ··= k:ε.

4

Definition 3 (reduction of built-in atom). For HCL∗ the following reduc-
tion rules shall be added:

– true Bo �, as well as true() Bo �

– X=Y Bk:σ �, if σ ∈ MguSet(X=Y)

– X;Y Bo X and X;Y Bo Y

Based on reduction, we shall now define SLD∗-resolution as an extension
of SLD-resolution. Assumed is a rule for selecting an atom from a sequence of
atoms, possibly relying on the previous course of computation [16, p. 62].

Definition 4 (SLD∗-resolution and derivation). Let A be an atom and
M,N queries. If A is selected from M,A,N and for some s, B holds A Bs B,
then we say s(M), B, s(N) is an SLD∗-resolvent of M,A,N with score s, and
M,A,N ↪−.s s(M), B, s(N) is an SLD∗-derivation step.

An SLD∗-derivation D of a query G is a sequence of SLD∗-derivation steps
G ↪−.s1 G1 ↪−.s2 In each sn = Kn:σn, Kn must be standardized apart (i.e.,
variable-disjoint) from the current history, D�n−1 ··= G ↪−.s1 ... ↪−.sn−1 Gn−1.

If D has n steps, it can be abbreviated as G ↪−.ns1+...+sn Gn. Here S ··=
s1 + ...+ sn is the (cumulative) score of D, denoted Score(D), from which the
list of input clauses, CList(S) ··= [Kn, ...,K1], and the list of mgus, SList(S) ··=
[σn, ..., σ1], can be extracted. By composing the mgus we obtain the partial answer
for G by D, Subst(S) ··= σn · ... · σ1. A final partial answer, whenever Gn = �,
shall be called a complete answer for G. In that case G is said to succeed. The
effect of a score S on a term t is given by S(t) ··= Subst(S)(t).

Thus, SLD∗-derivation is defined almost like SLD-derivation. The main dif-
ferences are the factoring-out of reduction, which allows utilities, and reviving
unrestricted composition of mgus instead of the usual restriction on query vari-
ables (as in c.a.s., computed answer substitution). Using input clauses (instead
of program clauses) in scores enables a simple definition of derivation variables:
Vars(D�n−1) ··= Vars((G,G1, ..., Gn−1, s1, ..., sn−1)) = Vars((G, s1, ..., sn−1)).
These variables are considered spent by step n.

Remark 5 (dual meaning of ”derivation”). To save some space, ”derivation” is
here understood both as a sequence of steps, i.e. queries interspersed with scores,
and as a relation between two queries.

Hence, we may say “let D ··= A ↪−.∗ B with no C within” as well as “let
A ↪−.∗ B hold”. Similarly for all later kinds of derivation.

To visualize the search for a successful SLD∗-derivation of a query, SLD∗-
trees are used, defined analogously to SLD-trees. Each node with more than
one descendant is a choice point. Any node labeled � is a success node. If one
SLD∗-tree for a query is successful, then any one is [1, p. 70]. Hence, if one finite
SLD∗-tree for G is unsuccessful, then any one is, so we say G is (finitely) failed.

To systematically search for a success node, backtracking is used: If the search
reaches a node without descendants, then it goes back to the last choice point,
where a new choice shall be tried.

5

3 From HCL∗ to Pure∗: Restrictions by implementation

Despite Prolog standard, there seems to be no consensus on a definition of
pure Prolog [7], but since we need some kind of understanding, let us try this:

Definition 6 (pure Prolog, Pure∗). Pure Prolog is a programming language
implementing HCL and obeying the following restrictions:

(R-var) variables are fixed: mgu is calculated by a fixed algorithm U, and stan-
dardizing apart is calculated by a fixed algorithm S

(R-ord) reduction order is fixed: it respects the ordering of atoms in a query,
and the ordering of program clauses within a predicate definition.

Similarly, Pure∗ implements HCL∗ and obeys the same restrictions, plus (R-
ord*): reduction rules for each utility are ordered.

Every implementation iHCL∗ of HCL∗ obeying (R-var), hence any Prolog, is
parametrized by two algorithms, U and S. That can be made explicit by iHCL∗U,S.
To denote all implementations with the same U, we write iHCL∗U. For iHCL∗U, a
propagation claim leading to an appropriate variant-lemma can be proved as in
[8, Sec. 6].

The examples in this text use U ··= MM and S ··= NT, where MM is a
deterministic version of Martelli-Montanari algorithm (with sequences instead
of sets and picking the leftmost equation eligible for a rule application) and NT
is defined below, after some preliminaries.

Standardizing-apart algorithms S can be seen as a special case of algorithms
producing (relatively) fresh terms:

Definition 7 (fresh renaming). A binary function New is a fresh-renaming
algorithm, if News(t) is a variant of t variable-disjoint with s, for any s, t.

To enable accumulation of spent variables, we allow an optional parameter
in superscript, so New+r is defined as New+r

s (t) ··= Newr,s(t) for any s, t.

In theoretical work, the existence of S is usually enough, established by the
well-known renaming device of Lloyd [11, p. 41]: For the n-th derivation step,
the original program clause variables are indexed with n, assuming that top-level
queries may not contain indices. This assumption, however, rules out resuming
of a derivation, i.e. starting from a resolvent, which is needed for proofs involving
modularity. As a remedy, instead of the whole D solely the variables of D can
be taken as a parameter of the algorithm.

So we shall say that a standardizing-apart algorithm is flat, if it depends
only on the spent variables, i.e. SD(K̂) = SVars(D)K̂. Such is the following fresh
renaming algorithm, based on the idea to rename only where necessary:

Definition 8 (thrifty fresh renaming, NT). The algorithm NT renames any
variable x apart from s as follows. If x appears in s, together with its indexed
versions x1, ..., xk, but xk+1 does not, then xk+1 shall replace x, i.e. NTs(x) ··=
xk+1. Otherwise, x remains unchanged.

6

Adding the restrictions (R-ord) and (R-ord*) means that the order of resol-
vents for a query is determined. To formalize this, we need a new concept of
derivation step, based on ordered reduction, to supersede ↪−..

Definition 9 (i-th program clause, i-th utility reduction). Assume the
predicate p/n is defined by m program clauses enumerated in the order of their
appearance as Clause(p/n, i) for i = 1, ...,m. If G has outline p/n, we also use
Clause(G, i). Similarly, in case of more than one reduction rule for a utility,
they are ordered as B1 ,B2 ,

So for disjunction we would write:

X;Y Bo
1 X

X;Y Bo
2 X

In case of uatom, we may need some fresh variables, hence reduction has to
avoid re-using already spent variables (expressed as a term P).

Definition 10 (i-th uatom reduction sparing P). Let i be a number, P a
term or void, and A an uatom. Sparing P, we say that A has i-th reduction to C
with score s ··= K:σ, written as A Bs

i,P C, if K = (H:-B) ··= SP (Clause(A, i))
and exists σ ··= U(H=A) and C = σ(B).

In terms of SLD∗-trees, the restrictions amount to having only one SLD∗-tree
per query and searching the tree in depth-first manner. A single tree merits a
name.

Definition 11 (LD∗-tree sparing P). Let G be a query or void, and P be a
term or void. The derivation tree for G sparing P, denoted as LD∗P (G), is the
SLD∗-tree for G identified by (R-var) with S+P , (R-ord) and (R-ord*).

Observe that here again we allow some variables (P) to be already spent. This is
to enable handling of sub-queries. Clearly, G is finitely failed in HCL∗ iff LD∗ (G)
is finite and without a success node.

Example 12. Assume U ··= MM, S ··= NT and the program

alt(X) :- p(X), q(X). % K̂a1
alt(X) :- s(X). % K̂a2
p(a). p(b). q(b). t(1). t(3). % K̂p1, K̂p2, K̂q, K̂t1, K̂t2

The tree LD∗�((alt(X),r(X))) is shown in Figure 2. Here sa1 = K̂a1[X1]:
(
X1
X

)
,

sa2 = K̂a2[X2]:
(
X2
X

)
, sp1 = K̂p1:

(
X
a

)
, sp2 = K̂p2:

(
X
b

)
and sq = K̂q:ε. Observe that

we wrote K̂p1 instead of K̂p1[] in the score sp1; in general, if the renaming does
not change the program clause, we leave out the bracketed part.

On the basis of i-th reduction, we now define top-level Pure∗ computation of
G . Intuitively, it is the left-to-right, depth-first path from the root of LD∗(G)
until possibly the first success node is encountered. Choices for G now being
ordered, the computation must be deterministic. Its linear rendering shall be
achieved with three devices:

7

alt(X),r(X)

sa1 sa2

p(X),q(X),r(X) s(X),r(X)

sp1 sp2

q(a),r(a) q(b),r(b)

sq

r(b)

alt(X),r(X)

sa1 sa2

p(X),q(X),r(X) s(X),r(X)

sp1 sp2

q(a),r(a) q(b),r(b)

sq

r(b)

Fig. 2. LD∗-tree, on the right with backtracking

– negative score, written as −s, serving to cancel a choice with score s

– meta-functor Back, where Back G means looking for the next choice for G

– meta-functor Top, serving as an artificial starting node, and thus ensuring
that every query shall have a parent node

Notation 13 (zero score, net-value). Due to cancellation of reduction scores, we
shall need zero score, denoted as ø. A derivation for G shall start as Top→ø G.
As it proceeds, scores accumulate in S, some of them cancelled. Even those are
important if we want to know which variables are already spent, hence CList(S)
is again defined to gather all input clauses from S, disregarding cancellation.

However, for the partial answer only non-cancelled scores are important, i.e.
the net-value of S, Net(S). It obeys Net(T+s+(−s)+U) = Net(T+ø+U), where
s is a reduction score and T,U are sub-sums of a cumulative score S. Zero-score is
neutral and obeys Net(ø) ··= ø, SList(ø) ··= [], CList(ø) ··= [] and Subst(ø) ··= ⊥.
If we need only input clauses of D not belonging to cancelled scores, i.e. the list
of promising clauses, we use CList(Net(Score(D))).

Definition 14 (node). If G is a query, then Back G is a revisited query. A
node is a query or a revisited query. To provide for the limits, a node can also
be � (void) or Top (top-level).

G or Back G shall be abbreviated as (Back)G, and amount to one node in the
corresponding LD∗-tree (Figure 2).

Definition 15 (Pure∗ derivation, top level). Let G be a Pure∗ query. The
(top-level) Pure∗ derivation for G in 0 steps is Top →ø G. Assume n ≥ 1 and
let D be the derivation for G in n− 1 steps ending with Gn−1, where G0 ··= G.

If Gn−1 was of the form � or Back Top, no further step is possible. Other-
wise, Gn−1 is of the form (Back)A,R where A is an atom and R may be void.
Let the most recent reduction of A starting a node (Back)A,R in D was m-th
(in case of none, set m ··= 0). The n-th step is as follows:

1. If there is a next reduction for A, i.e. for some minimal k > 0 exists m+k-th
reduction sparing D as A Bs

m+k,D C, then (Back)A,R→s C, s(R).

8

2. Otherwise, (Back)A,R→−s Back B, where B/s = Parentn{(Back)A,R}.

Here Parentn{A} = B/s, if (Back)B →s A is the most recent forward step
(i.e. step with a non-negative score) ending in A before step n.

As usual, the (top-level) Pure∗ computation for G is the maximal Pure∗

derivation for G. The computation of alt(X),r(X) for the program in Exam-
ple 12 is given in Figure 3. It is a linear rendering of LD∗�(alt(X),r(X)) from
Figure 2.

derivation step aspects of cumulative score S:
nr. score query promising input clauses part. answer

Top CList(Net(S)) Subst(Net(S))

0. →ø alt(X),r(X) [] ⊥
1. →K̂a1[X1]:(X1

X) p(X),q(X),r(X) [K̂a1[X1]]
(
X1
X

)
2. →K̂p1:(X

a)
q(a),r(a) [K̂p1, K̂a1[X1]]

(
X

a

)
·
(
X1
X

)
3. →−K̂p1:(X

a)
Back p(X),q(X),r(X) [K̂a1[X1]]

(
X1
X

)
4. →K̂p2:(X

b)
q(b),r(b) [K̂p2, K̂a1[X1]]

(
X

b

)
·
(
X1
X

)
5. →K̂q :ε

r(b) [K̂q, K̂p2, K̂a1[X1]] ε ·
(
X

b

)
·
(
X1
X

)
6. →−K̂q :ε

Back q(b),r(b) [K̂p2, K̂a1[X1]]
(
X

b

)
·
(
X1
X

)
7. →−K̂p2:(X

b)
Back p(X),q(X),r(X) [K̂a1[X1]]

(
X1
X

)
8. →−K̂a1[X1]:(X1

X) Back alt(X),r(X) [] ⊥
9. →K̂a2[X2]:(X2

X) s(X),r(X) [K̂a2[X2]]
(
X2
X

)
10. →−K̂a2[X2]:(X2

X) Back alt(X),r(X) [] ⊥
11. →−ø Back Top [] ⊥

Fig. 3. Linear rendering of a LD∗-tree

Assuming the computation of G is finite, how could it have ended? By def-
inition, if G →∗ �, the computation must stop. Also, if there is no choice for
resolving G, then we readily obtain Top →ø G →−ø Back Top. But it can
also happen that there are choices for G, yet none leads to �. In that case those
choices shall be unraveled until their parent, G, is revisited, obtaining eventually
Top→ø G→s H ... →−s Back G→ ... →−ø Back Top.

Let us call a subderivation of the form (Back)G →s ... →−s Back G a
dead-end branch. In Figure 3, steps 2-3, 5-6, 4-7, 1-8 and 9-10 are such branches.

The next claim states that backtracking happens stackwise: before we back-
track on a parent, we backtrack on all of its children.

Lemma 16 (zero score). The score of a dead-end branch has net-value ø.

Knowing the boundaries of a computation enables us to define subnodes: If
A→∗ B such that no Back Parent{A} is within, we say B is a subnode of A.

Now let us see how to recognize success or finite failure (as defined in HCL∗)
in a Pure∗derivation. By stripping of dead-end branches, we obtain

9

Lemma 17 (success/failure). If G→∗S �, then G ↪−.∗Net(S) �, i.e. G succeeds

in HCL∗. If G→∗ Back Top, then G fails finitely in HCL∗.

Remark 18 (past is now included). In contrast to SLD∗-derivations, a Pure∗

derivation does not consist only of “promising” resolvents, but also of “dead-
end” resolvents: anything that was tried (and possibly failed) along the way to
the current query. Clearly, this must be taken into account for proofs involving
Pure∗ derivations.

An appropriate variant lemma for Pure∗ derivations would be similar to the
variant lemma for iHCLU [8, Sec. 6] except that (due to backtracking) the step
variance βn now cannot map the whole D�n on its counterpart D′�n, but just
the current query Gn and cumulative score s1 + ...+ sn.

4 Toward big-step derivation

As seen in Section 3, implementing a logic programming language removes many
sources of non-determinism. Must we now see Pure∗ computation of a query as
unique (“the computation”), or still as one of many? We advocate the latter view,
justified by a somewhat neglected further source of non-determinism: the context.
At first glance, computing a Pure∗ query G should be “the same” independent
of what preceded it and what is about to follow. Yet this is not quite so:

– Without queries to follow G, no backtracking on G shall be attempted. Oth-
erwise, more than one answer for G is possible, giving shorter or longer com-
putations for G.

– Standardizing apart depends on a pool of available variables, so if there were
queries preceding (or following) G, their variables are not available: they are
“spent”. Thus, computations of G may differ in fresh variables.

4.1 Backtracking cause: residual

The top-level computation of G (Definition 15) stops in case of finite failure, or
the first answer. To try to capture the search for next answer, i.e. backtracking
on G, we have to consider G not alone but as part of some conjunction G,R. In
other words, we need a ”residual” query R coming after G. Without any such,
there would be no need to ever1 go back on G. Residual is nothing else than the
success continuation for a Prolog query. It is used, with or without a name, in
[10], [9], [4]. In [3], residual is modeled by “conjunction of two derivations”.

Normally, a residual is just a query, but to include top-level computation we
allow it to be void. Unlike the (first and only) answer for G in a top-level deriva-
tion, the n-th answer for G upon R is computed intermittently, in a sequence of
“spells”: after answering G, the residual is going to be computed, and if it fails,
another answer for G shall be sought, and so on.

1 In a Prolog top-level loop, the user’s reaction can be thought of as the residual.

10

Definition 19 (initial spell). Let G be a query and R a query or void. The
initial spell of G upon R is the maximal derivation starting with G,R and not
having inside it an instance of R, or Back Parent{G,R}.

Assume the initial spell of G upon R was finite, with score S. By definition
of resolution, if the spell ends with an instance of R, then it must be S(R).
Otherwise the spell ends in Back Parent{G,R} and Net(S) = ø.

Definition 20 (n + 1-th spell). Let n ≥ 1. Assume the n-th spell of G upon
R was finite, with Net(Sn) 6= ø. If Sn(R) fails, then for some s holds G,R →∗
(Back)Sn(R)→−s Back Parent{Sn(R)}.

In that case, there is n+ 1-th spell of G upon R. It is analogously defined as
the initial spell, but starting with (Back)Sn(R)→−s Back Parent{Sn(R)}.

A Pure∗ computation of G is a chronological sequence of all spells of G upon
R, for some residual R. A derivation is an initial fragment of a computation, as
usual. In Figure 3, there are two success spells of p(X) upon q(X),r(X) before
the final spell (exhaustion): step 2, steps 3-4 and steps 7-8.

Definition 21 (n-th answer). Assume n ≥ 1 and the n-th spell of G upon R
is finite with score Sn. If Net(Sn) 6= ø, we say G succeeded upon residual R with
n-th complete answer Sn, written as G \nS R.

The justification for calling Sn an “answer” for G lies in

Lemma 22 (all answers). If G \nS fail, then G ↪−.∗Net(S) �. Conversely, if

G ↪−.∗T �, then for some n,S holds G \nS fail and T = Net(S).

Just the fresh variables in the scores may vary, depending on R: If G \nS1
R1

and G \nS2
R2, then S1(G) = S2(G).

Traditionally, universal termination of G is defined as finiteness of LD∗(G).
An equivalent definition would be: G terminates universally if and only if G , fail
terminates [12]. This is another nice use for residuals.

Definition 23 (termination, n-finiteness). If G (finitely) fails or succeeds,
we say it terminates. We say that G is n-finite, if there is a maximal n such
that for some R holds G \nR. If G fails, it shall be called 0-finite. Any n-finite
query is said to terminate universally, or to be exhaustible.

In Example 12, alt(X),r(X) finitely failed (0-finite), but alt(X) upon r(X)

is 1-finite with complete answer
(
X1
b

X
b

)
, and p(X) upon q(X),r(X) is 2-finite with

complete answers
(
X
a

)
and

(
X
b

)
.

4.2 Modularity: impact of spent variables

For proving properties of a formal model of Pure∗, it would be good to have
a kind of modularity of Pure∗ derivations. It rests upon two questions: first,

11

could a derivation be resumed, and second, could a conjunction be computed in
a piecemeal fashion?

Even in HCL∗, the path relation is not transitive: If A ↪−.∗S B and B ↪−.∗T C,
it would be expected that also A ↪−.∗S+T C, or at least A ↪−.∗ C. But regretfully
this does not always hold, as the following program shows.

p(X) :- q(Y). % K̂1

q(Y) :- r(X). % K̂2

Here p(X) ↪−.K̂1[X1,Y]:(X1
X) q(Y) and q(Y) ↪−.K̂2[X,Y1]:(Y1

Y) r(X), although p(X) ↪−.∗

r(X) is not possible, due to standardizing-apart.
Clearly, the reason for non-transitivity is that a derivation step has an implicit

parameter, the current history. By making it explicit, and choosing S to be flat,
we obtain an ersatz for transitivity:

Lemma 24 (resumability). Let S be flat. For any queries A,B,C and any
term or void P satisfying Vars((P , B)) = Vars((A,S, B)) holds: If A→∗S B and
true(P), B →+

T C, then A→∗S+T C.

Regarding compositionality, for equations there is an iteration property [1]
enabling us to compute an mgu φ of E′, E′′ by computing an mgu σ for E′,
then an mgu θ for σ(E′′), giving φ ··= θ · σ (this also holds for “the” mgu by
MM). In case of general queries, such an iteration property does not hold for
either complete answer or c.a.s.. By accomodating history again, it can hold for
complete answer, as stated below (Theorem 26).

Notation 25 (preface). Let P be a term or void. We abbreviate true(P), G \nS R
as P G \nS R, and say that P is a preface for computing G.

Theorem 26 (iteration for complete answer). Let S be flat. Let A,B,R
be queries, and P be a term or void. Then:

1. If P A \S B,R and P , A,S S(B) \T S(R), then also P A,B \S+T R.

2. Conversely, if P A,B \U R, then there are S,T such that P A \S B,R and
P , A,S S(B) \T S(R) and U = S + T.

Using big-step, the order of answers for a conjunction can also be expressed
in a succinct yet still readable way (without proof).

Lemma 27 (n-th complete answer). Let S be flat. The query A,B has at
least n complete answers upon R, written as A,B \nUn

R, iff there are natural
numbers p, m1, ...,mp and n1, ..., np such that 0 = m0 < m1 < ... < mp and
n1 + ...+ np = n, and also

1. For j = 1, ...,mp and some Sj holds A \jSj
B,R.

2. For i = 1, ..., p holds: Sj(B) fails whenever mi−1 < j < mi, but for k =
1, ..., ni and some Ti,k holds A,Smi

 Smi
(B) \kTi,k

Smi
(R).

3. Smi(B) is ni-finite for i = 1, ..., p− 1.

12

Finally, for i = 1, ..., p and k = 1, ..., ni holds Un1+...+ni−1+k = Smi
+ Ti,k.

To conclude, an appropriate variant lemma for Pure∗ derivations, outlined at
the close of the previous section, can be reformulated with big-step as follows.

Theorem 28 (variant, big-step). Assume a renaming-compatible U produc-
ing relevant mgus, i.e. mgus without extraneous variables. Let α be a prenaming2

with C(α) = Vars((P , Q,R)). If P Q \S R, then α(P) α(Q) \(α]λ)(S) α(R),
where λ is mapping the promising input clauses of the underlying small-step
derivations.

5 Adding utilities that modify backtracking

Tampering with backtracking as in the case of the “cut” functor !/0 or the pair
catch/3 and throw/1 can also be handled by customized reduction, plus one or
two special-case rules for Back. Compared to [5], the (re-)execution of cut is
now more readable but still precise.

Observe: when adding a utility, care must be taken to ensure Lemma 16 still
holds, in order to have correct scores.

5.1 Emulating cut

Upon execution, the cut succeeds like true/0, but upon re-execution it prunes
the LD∗-tree. This can be emulated by its reduction to nothing and an addi-
tional rule for Back. The rule shall handle the special case of revisiting a query
starting with cut, and shall in that case replace the default rules 1 and 2 from
Definition 15.

! Bo �
Back !,R →−S Back Parent{CutParent{!,R}}

Here the cut-parent of a node is the most recent node whose resolution produced
this occurence of cut (i.e., the node that “issued” this cut).

Finally, S is the score of the subderivation between Parent{CutParent{!,R}}
and Back !,R. The purpose of the rule is to discard any alternatives between
Back !,R and the parent of the cut-parent.

Example 29 (cut). If we change K̂a1 in Example 12 to

alt(X) :- p(X), !, q(X). % new K̂a1

we obtain the computation in Figure 4, with S = K̂t1:
(
Y
1

)
+ K̂a1[X1]:

(
X1
X

)
+

K̂p1:
(
X
a

)
+ o− o. Notice that the second clause for alt/1 shall not be tried.

2 A prenaming α is a variable-pure substitution in a so-called relaxed core representa-
tion, i.e. some pairs x/x are allowed, with mutually distinct variables not only in its
core C(α) but in the range α(C(α)) as well [8].

13

t(Y), alt(X), r(X)

→K̂t1:(Y
1) alt(X), r(X)

→K̂a1[X1]:(X1
X) p(X), !, q(X), r(X)

→K̂p1:(X
a)

!, q(a), r(a)

→o q(a), r(a)

→−o Back !, q(a), r(a) % cut-parent: alt(X), r(X)

→−S Back t(Y), alt(X), r(X)

→K̂t2:(Y
3) ...

Fig. 4. Emulating cut

Having cut enables us to emulate several more utilities:

once(G) Bo G,!

If ->Then;Else Bo call(If),!,Then;Else

If ->Then Bo call(If),!,Then;fail

\+G Bo call(G),!,fail;true

Standard-abiding opacity for cut ([13, pp. 100-101], [5]) must be ensured for
the reduction of any utility based on cut, like if-then-else3. So Then or Else
must be “transparent” for cut, and If must be “opaque” for cut. This is ensured
in our reduction of If ->Then;Else by means of call/1. The utility call/1 is
emulated simply as

call(G) Bo G

By enveloping its argument, call/1 makes it opaque for cut. Hence, for possible
cut in Then or Else the cut-parent must be (If ->Then;Else),R, but for cut in
If the cut-parent must be more recent, call(If),!,Then,R.

5.2 Emulating catch/throw

For catch/3 and throw/1, the following reduction rules can be used:

catch(G,Catcher,Recovery) Bo G

throw(Ball) Bo fail

Reducing throw/1 to fail/0 is not the same as default failure by lack of program
clauses: it enables backtracking on throw/1. On backtracking, throw/1 springs
to life:

Back throw(B), R→o σ((Rec,R′))

Back throw(B), R→−S Back Parent{catch(G,C,Rec), R′}
3 For backtracking reasons, if-then-else is here not treated as a special case of disjunc-

tion, but as a ternary functor.

14

Here we have not one but two Back rules for revisiting query throw(B), R, to
replace respectively the default rules 1 (“next choice”) and 2 (“no more choices”)
from Definition 15. The latter serves to discard any alternatives between the
current throw and the parent of the issuing catch.

To fill in the missing variables G ,C ,Rec,R′ as well as σ, observe: If the utility
pair catch/throw is used in a standard-abiding way [4], then throw(B) was
issued by G from some catch(G,C,Rec), and B is unifiable with C . In that
case, throw(B),R must be a subnode of the most recent catch(G,C,Rec),R′,
with existing σ ··= U(SC (B),C). Also, it must be a subnode of G,R′.

Finally, S is the score to be discarded, belonging to the subderivation between
Parent{catch(G,C,Rec),R′} and the current Back throw(B),R.

Example 30 (catch/throw). By changing K̂q in Example 12 to

q(b) :- throw(xb). % new K̂q

the computation in Figure 5 is obtained, with S = K̂t1:
(
Y
1

)
+ ... − o.

t(Y), catch(alt(X),B,rx(B)), r(X)

→K̂t1:(Y
1) catch(alt(X),B,rx(B)), r(X)

→o alt(X), r(X)

→K̂a1[X1]:(X1
X) p(X), q(X), r(X)

→K̂p1:(X
a)

q(a), r(a)

→−K̂p1:(X
a)

Back p(X), q(X), r(X)

→K̂p2:(X
b)

q(b), r(b)

→K̂q :ε
throw(xb), r(b)

→o fail, r(b)

→−o Back throw(xb), r(b)

→o rx(xb), r(X) % = σ((rx(B),r(X))) with σ = {B/xb}
→−o Back throw(xb), r(b) % due to lack of rx/1

→−S Back t(Y), catch(alt(X),B,rx(B)), r(X)

→K̂t2:(Y
3) ...

Fig. 5. Emulating catch/throw

6 Summary

A way to add utilities to pure Prolog and still remain in resolution logic is out-
lined. To this aim, the concept of structural functor is suitably restricted, so
that “atom” (unstructured logical term) can be a utility, and reduction of an
atom is factored out of resolution, to be extended with utilities. The program-
ming language obtained by adding truth values, explicit unification and explicit
disjunction is called Pure∗. To represent Pure∗ computation, we start from the
traditional concept of SLD-derivation and add backtracking steps necessary for

15

implemented logic. A big-step concept of derivation is also suggested. It is built
around query context, which is two-fold, consisting of the prequel to the query
(preface) and its sequel (residual). Residual is the cause of backtracking. Preface
provides history of computation. With context, not only top-level but also sub-
computation can be expressed. As an aside, the concept of backtracking steps
can accomodate “cut” and other utilities that affect backtracking.

Acknowledgement

Many thanks are due to anonymous referees.

References

1. Apt, K.R.: From logic programming to Prolog. Prentice Hall (1997)
2. Börger, E., Rosenzweig, D.: A mathematical definition of full Prolog. Sci. of Com-

puter Programming 24(3), 249–286 (1995)
3. Comini, M., Meo, M.C.: Compositionality properties of SLD-derivations. Theor.

Comp. Sci 211, 275–309 (1999)
4. Deransart, P., Ed-Dbali, A., Cervoni, L.: Prolog: The standard (reference manual).

Springer-Verlag (1996)
5. ISO: Information technology - Programming languages - Prolog - Part 1: General

core. ISO/IEC JTC 1/SC 22 (1995), iSO/IEC 13211-1-1995. https://www.iso.
org/standard/21413.html

6. Jones, N.D., Mycroft, A.: Stepwise development of operational and denotational
semantics for Prolog. In: Proc. of the ISLP’84. pp. 281–288. Atlantic City (1984)

7. Kifer, M.: (2005), https://www.w3.org/2005/rules/wg/wiki/Pure_Prolog.html
8. Kulaš, M.: A practical view on renaming. In: Schwarz, S., Voigtländer, J. (eds.)

Proc. WLP’15/’16 and WFLP’16. EPTCS, vol. 234, pp. 27–41 (2017)
9. Kulaš, M., Beierle, C.: Defining Standard Prolog in rewriting logic. In: Futatsugi,

K. (ed.) Proc. of WRLA’00. ENTCS, vol. 36, pp. 158–174. Elsevier (2001)
10. Lindgren, T.: A continuation-passing style for Prolog. In: Proc. SLP’94. pp. 603–

617 (1994)
11. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag, 2. edn. (1987)
12. Neumerkel, U.: Teaching Prolog and CLP. In: Tutorial notes of ICLP’97 (1997)
13. O’Keefe, R.A.: The Craft of Prolog. The MIT Press (1990)
14. Pusch, C.: Verification of compiler correctness for the WAM. In: Proc. TPHOLs.

LNCS, vol. 1125, pp. 347–361. Springer Berlin Heidelberg (1996)
15. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. of

ACM 12(1), 23–41 (1965)
16. Shepherdson, J.C.: Negation as failure: A comparison of Clark’s completed data

base and Reiter’s closed world assumption. J. Logic Programming 1, 51–79 (1984)
17. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A linear opera-

tional semantics for termination and complexity analysis of ISO Prolog. In: Proc.
LOPSTR’11. LNCS, vol. 7225, pp. 237–252 (2012), proofs in: Technical Report
AIB-2011-08, RWTH Aachen

18. Tobermann, G., Beckstein, C.: What’s in a trace: The box model revisited. In:
Proc. of AADEBUG’93. LNCS, vol. 749, pp. 171–187. Springer-Verlag (1993)

19. Šebeĺık, J., Štěpánek, P.: Horn clause programs for recursive functions. In: Clark,
K.L., Tärnlund, S.A. (eds.) Logic Programming. Academic Press (1982)

16

https://www.iso.org/standard/21413.html
https://www.iso.org/standard/21413.html
https://www.w3.org/2005/rules/wg/wiki/Pure_Prolog.html

A Proofs

A.1 Auxiliary claims

We start with a simple variable-conservation lemma. By applying a substitution
on a term, the term may lose some or win some variables, but any changes are
balanced by the substitution.

Lemma 31 (no change). For any term t and any substitution σ holds

Vars(t) ∪Vars(σ) = Vars(σ(t)) ∪Vars(σ)

Proof. Let x ∈̊ t. If x 6∈ Core(σ), then x = σ(x) ∈̊ σ(t). In other words, any
variables from t that are missing in σ(t) can be found in Core(σ). Analogously
for the possible win. ♦

In the following we shall need a symbol for a reduction of A that is actually
reachable with the given residual R. We also assume a preface P .

Due to zero score of a dead-end branch, the score of the reduction is equal
to (the net-value of) the score of a backtracking derivation leading to it.

Notation 32 (reduction in context). Given is a query G, a term P and a query
(or void) R. If for some C,S holds true(P), G,R→+

S C,S(R) and G BNet(S) C,
that shall be shorter written as P G B C \S R.

In Theorem 26, we show an attempt to uncover an iteration property for
complete answer. But first we need to handle the case of one resolution step.

The direct part of the base case is straightforward, it just rephrases a reso-
lution step by means of ”\”.

Lemma 33 (split). Let A be an atom. If P A,B \S R, then for some C,T,U
holds P A B C \T B,R and P , A,T C,T(B) \U T(R) and S = T + U.

The interesting part is the converse, claiming that a derivation starting from
a resolvent and sparing the original query and the score of the resolution is
indistinguishable from the original derivation. In other words, the outcome of
a resolution step should be determined by the algorithms U, S and the spent
variables, and by nothing else. Therefore, S must be flat.

Lemma 34 (assemble). Let S be flat. Let A be an atom. If for some C, S,T
holds

P A B C \S B,R and P , A,S C, S(B) \T S(R)

then also holds P A,B \S+T R.

Proof. From P A B C \S B,R follows

true(P), A,B,R→+
S C,S(B),S(R) (1)

17

From P , A,S C, S(B) \T S(R) follows

true((P , A,S)), C,S(B),S(R)→+
T T(S(R)) (2)

Before Lemma 24 could be applied, the variables of (2) must obey

Vars((P , A,S, C,S(B),S(R))) = Vars((P , A,B,R,S))

By Lemma 31 we know Vars(B)∪Vars(S) = Vars(S(B))∪Vars(S), and similarly
for R. Also, Vars(C) ⊆ Vars((A,S)).

Therefore, Lemma 24 may be applied on (1) and (2), giving

true(P), A,B,R→+
S+T T(S(R))

The necessary border condition is ensured by the two original derivations. ♦

A.2 Some claims from the main text

Lemma 16 (zero score). The score of a dead-end branch has net-value ø.

Proof. For the branch Top →ø G →−ø Back Top the claim is obvious. Let
D be (Back)G →s H ... (Back)H →−s Back G, where (Back)G is an
abbreviation of “G or Back G”. We shall use induction on the number n of
inner nodes. If n = 1, the derivation is (Back)G →s H →−s Back G, and it
satisfies the claim.

Assume the claim holds for up to n ≥ 1 inner nodes and consider a derivation
with n+ 1 inner nodes. To cater for more than one inner node, there must have
been choices for H, finitely many (guaranteed by Back H →−s Back G). So let
H have m choices. Then the derivation looks like

(Back)G→s H

→t1 F1 ... (Back)F1 →−t1 Back H

...

→tm Fm ... (Back)Fm →−tm Back H

→−s Back G

By applying the inductive hypothesis on the m subtrees of the form→ti ...→−ti

Back H (each having less than n inner nodes), sum total of ø is obtained. ♦

Lemma 24 (resumability). Let S be flat. For any queries A,B,C and any
term or void P satisfying Vars((P , B)) = Vars((A,S, B)) holds: If A→∗S B and
true(P), B →+

T C, then A→∗S+T C.

Proof. At the start of the second derivation, the variables of A,S, B (and no
others) are spent, the same situation as at the end of the first derivation.

Since S is assumed to be flat, solely the spent variables determine standard-
izing apart. So the first derivation can be continued indistinguishably from the
second one (after getting rid of true(P)). ♦

18

Theorem 26 (iteration for complete answer). Let S be flat. Let A,B,R
be queries, and P be a term or void. Then:

1. If P A \S B,R and P , A,S S(B) \T S(R), then also P A,B \S+T R.

2. Conversely, if P A,B \U R, then there are S,T such that P A \S B,R and
P , A,S S(B) \T S(R) and U = S + T.

Proof. By induction on the number k of conjuncts in A. We start with the base
case k = 1, i.e. A is an atom.

Direct part By induction on the length n of derivation of A. For n = 1, A
can be true , true() or a unification. The claim follows from the definition of
resolvent. Now assume the claim holds for derivations of length ≤ n and consider
a derivation for A of length n+ 1. Assumptions are

P A \SB,R (A.3)

P , A,S S(B)\TS(R) (A.4)

From Lemma 33 applied on (A.3), A had to have been resolved, so for some
C,V,U with S = V + U we have

P A B C \V B,R (A.5)

P , A,V C \U V(B),V(R) (A.6)

Then S() = U(V()), so by (A.4) holds P , A,V + U U(V(B)) \T U(V(R)) and
hence, by Vars(C) ⊆ Vars((A,V)),

P , A,V, C,U U(V(B)) \T U(V(R)) (A.7)

Applying the inductive hypothesis on (A.6) and (A.7), we obtain

P , A,V C,V(B) \U+T V(R)

This and (A.5) give, by Lemma 34, P A,B \V+U+T R with V + U + T = S + T,
which proves the direct part.

Converse part By induction on the length n of derivation of A,B. For n = 2,
A and B can be true , true() or a unification. The claim follows from the
definition of resolvent. Now assume the claim holds for derivations for A,B of
length ≤ n and consider a derivation of length n+ 1.

The assumption is P A,B \U R. By Lemma 33, for some C,W,V

P A B C \W B,R (A.8)

P , A,W C,W(B) \V W(R), and U = W + V (A.9)

By induction hypothesis on (A.9), V can be split as V = V1 + V2 such that

P , A,W C \V1
W(B),W(R) (A.10)

P , A,W, C,V1 V1(W(B))\V2
V1(W(R)) (A.11)

19

By Lemma 34 applied on (A.8) and (A.10),

P A \W+V1
B,R

By (A.11) and Vars(C) ⊆ Vars((A,W)), we obtain

P , A,W + V1 V1(W(B)) \V2
V1(W(R))

So U can be split as U = W + V1 + V2 with required properties.

Base case is thus proved. Now assume the claim holds for conjunctions of up
to k conjuncts. Let A ··= Q,Q′ where Q is an atom and Q′ is a conjunction of
length k.

Inductive case, direct part The assumptions are

P Q,Q′\SB,R (A.12)

P , Q,Q′,S S(B) \TS(R) (A.13)

We wish to obtain P Q,Q′, B \S+T R. By applying the converse part of the
base case on (A.12), there are U,V with U + V = S and

P Q \UQ
′, B,R (A.14)

P , Q,U U(Q′)\VU(B,R) (A.15)

By Lemma 31, Vars(Q′)∪Vars(U) = Vars(U(Q′))∪Vars(U). Hence, (A.13) can
be rearranged as

P , Q,U,U(Q′),V V(U(B))\TV(U(R)) (A.16)

By induction hypothesis, from (A.15) and (A.16) follows

P , Q,U U(Q′),U(B)\V+TU(R) (A.17)

By applying the direct part of the base case on (A.14) and (A.17),

P Q,Q′, B\U+V+TR

Inductive case, converse claim This can be proved similarly. ♦

20

	Toward a concept of derivation for Prolog

