
A New Benchmark Database and
An Analysis of Transitive Closure Runtimes

Stefan Brass and Mario Wenzel

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

brass@informatik.uni-halle.de, mario.wenzel@informatik.uni-halle.de

Abstract. In this paper, we compare the performance of logic program-
ming systems such as XSB with the performance of relational database
systems such as SQLite and RDF stores such as Apache Jena.
There are three main contributions compared to the OpenRuleBench [6]:
(1) We created a database for storing and evaluating the runtimes of
the benchmarks. In particular, this manages several executions of the
same benchmark configuration, which is missing in the OpenRuleBench
scripts. We also measure more parameters. (2) We identified and solved
a problem with the OpenRuleBench test graphs for the transitive closure
benchmark. We also added a relatively large number of additional test
graphs of different structure. (3) We propose a simple cost measure for
the transitive closure benchmark based on parameters of the graph, and
compare the measured run times with this cost measure.
Currently, we did measurements and analysis only for the transitive clo-
sure benchmark. The OpenRuleBench collection is much larger. Our
database is general enough to store all benchmark results, but the other
work is just the beginning of a larger project.

1 Introduction

Benchmarks can be a useful tool to compare performance between systems and
evaluate how well different kinds of systems and evaluation schemes perform
against each other. Especially comparing different models of computation and
evaluation schemes can be helpful for system developers in identifying shortcom-
ings and furthering cross-pollination between disciplines.

In the area of deductive databases/rule-based systems, OpenRuleBench [6] is
a well-known benchmark suite. It is a quite large collection of problems, basically
12 logic programs, but some with different queries and different data files. The
original paper [6] contains 18 tables with benchmark results.

However, the OpenRuleBench scripts run each benchmark only once, and do
not support comparing benchmarks run with different option settings or pro-
gram versions, or even on different machines. We have developed a database and
new benchmark execution scripts in order to overcome these restrictions. Fur-
thermore, the test graphs used in OpenRuleBench for the transitive closure have
a very specific (dense) structure, and even graphs declared as non-cyclic contain

2 Stefan Brass and Mario Wenzel

loops. We solved this problem and used a much larger collection of different test
graphs.

In this paper, we report results for only one of the OpenRuleBench bench-
mark problems, namely the transitive closure, but we look at it in much more
detail. In particular, we define a cost measure, namely the number of applica-
ble rule instances, and compare the actual runtimes with this cost measure. We
believe that for declarative programming, it is important that one can get a
rough estimate of the runtime on an abstract level (without need to understand
implementation details). At least, one wants to be sure that for all inputs that
might occur (even larger ones), the runtime will be acceptable. If the runtime
would suddenly “explode” for specific inputs, the system would be unreliable.

We checked not only logic programming systems such as XSB [9], YAP [5],
and SWI-Prolog, but also relational databases (currently only SQLite3, but Post-
greSQL and HSQLDB are coming soon), and RDF triple stores/graph databases
(Apache Jena) as well as DataScript (a Datalog query engine for JavaScript). Of
course, we also included our own abstract machine for Push bottom-up evalua-
tion of Datalog [4]. Our own system development project also made it necessary
to develop a database for our performance measurements that permits to eval-
uate the effects of updates and different implementation alternatives.

The runtimes of transitive closure in relational databases have already been
investigated in [7], but there has been progress in the implementations of rela-
tional database systems. For instance, the number of iterations, which used to
be important eight years ago, has become much less important now.

In addition, we did some measurements on main memory consumption, also
giving a cost measure for that resource.

2 A Benchmark Database

The OpenRuleBench scripts [6] run each benchmark only once. However, it is
common practice to execute benchmark programs several times. There is some
variation in the runtimes of the same program on the same data on the same
machine. For instance, the total runtime of XSB for the tcff benchmark with
the largest tested random graph (f 2k 1m) in 10 runs varied between 64.1s and
75.9s (with average 69.7s and standard deviation 5.1s). Since we are developing
our own system, we want a reliable indication of the effects of changes in the
implementation, even if they are not dramatic.

When measuring other systems, we feel obliged to do some tests with different
option settings (or different indexes) and choose the best settings we could find
(with our limited expertise). Thus, the situation gets more complicated than
in the OpenRuleBench, since we have different implementation variants of the
same benchmark for the same system.

Furthermore, as developers we use different machines with different operating
systems. In order to keep the overview of the different runtime measurements,
we decided to develop a benchmark database.

The database has the following tables:

A New Benchmark Database and An Analysis of TC Runtimes 3

– MACHINE(MACHINE, SEQ NO, STATUS, MODEL, YEAR, MONTH, PRICE,

NUM CPUS, CPU, CPU CORES, CPU THREADS, GHZ, ARCH, RAM,

NUM DISKS, DISK, SSD, OS, OS CORE)
These are some data on the test machines. We underline primary key at-
tributes, in this case the machine name. There is a single “standard ma-
chine” marked with STATUS=’S’, and many views for evaluating the data
are restricted to this machine. However, the database permits to store and
evaluate benchmark measurements for different machines with different ar-
chitectures and operating systems. The number in column SEQ NO can be
used for ordering the list of machines.

– BENCHMARK(BENCH, SEQ NO, HEADLINE)

This is the list of all benchmarks, e.g. tcff is a benchmark identifier in
column BENCH. It corresponds to the computation of the transitive closure
with query tc(X,Y), i.e. with both arguments “free”. Another benchmark,
tcbf, is the computation of transitive closure with query tc(1,X), i.e. the
first argument “bound” (to a given value), and the second argument “free”.
The column SEQ_NO is for ordering benchmarks in the output, e.g. when a
web page with all benchmark results should be generated. This would also
need a HEADLINE for each benchmark.

– PROGRAM(PROG, SEQ NO, FULL NAME, URL, REMARK)

This table lists the tested programs, such as xsb.

– PROG VER(PROG→PROGRAM, VER, MACHINE→MACHINE, VER NAME,

VER ADDTEXT, VER DATE, COMPILER, STATUS, REMARK)
This table lists program versions that are or were installed on a test ma-
chine. They are identified here by a number that is unique together with the
program name and the machine. These three elements (Program, Version
number, and machine) are also encoded in the file names with the test re-
sults. We use a simple sequential number VER for the version in the key, not
the real version number (which can be an arbitrary string). The real version
number is available in column VER NAME and can be used for output.

This table also defines a current version of a program on a machine (by
STATUS=’C’). Some views show only results for the current version. It is also
possible to define a previous version (STATUS=’P’) as reference, if the result
of a program update should be evaluated.

– BENCH IMPL(PROG→PROGRAM, BENCH→BENCHMARK, IMPL, STATUS,

DESCRIPTION)

In general, there are different option settings (e.g. index selections) that
should be tested for the same program to execute a given benchmark as
fast as possible. We call such a combination of benchmark, program and
option settings a “benchmark implementation”. STATUS=’B’ marks the best
implementation that is used in some views to compare different programs.
This is selected manually, but there are also views that help to find the best
implementation.

4 Stefan Brass and Mario Wenzel

– DATA FILE(FILE ID, SEQ NO, LINES, BYTES, FILENAME)

The filename is stored without extension, since we need the data files in
different formats for different programs. The number of bytes is the size of
the “Datalog Facts” version. There is one fact per line, i.e. LINES is the
number of facts (tuples in the relation).

– GRAPH DATA(FILE ID→DATA FILE, NUM NODES, NUM EDGES, ...,

TC SIZE, COST)
For data files that are standard directed graphs, more information is avail-
able. This helps to evaluate the results for the transitive closure benchmark.

– BENCH INPUT(BENCH→BENCHMARKS, FILE ID→DATA FILE)

This is the many-to-many relation that states which input files should be
used for which benchmark.

– BENCH RUN(RUN DATE, RUN NO, PROG, VER, MACHINE, BENCH, IMPL,

FILE ID, WITH OUTPUT, LOAD TIME, EXEC TIME, TOTAL TIME,

USER TIME, SYS TIME, REAL TIME, MEM, STATUS, REMARK)
This is the main table that contains the benchmark results. There are three
foreign keys:

• PROG, BENCH, IMPL → PROG IMPL.
• BENCH, FILE_ID → BENCH INPUT.
• PROG, VER, MACHINE → PROG_VER.

There are two sources for timing information: Measurements done by the
program itself, and external measurements done with /usr/bin/time. The
following values are what the program that runs the benchmark reports (if
available):

• LOAD TIME: This is the time for loading the input data. (All time values
are stored in milliseconds.)

• EXEC TIME: This is the execution time for the benchmark query. If the
column WITH OUTPUT is ’Y’, it contains the time for writing the query
result. However, all normal measurements are done without writing the
result. But we generated a query result file at least once for each system
and benchmark in order to check whether the result is correct. Also,
a very large time difference to the normal benchmark execution would
indicate that the optimizer of the system is too clever and uses the fact
that the result values are not really read.

• TOTAL TIME: This is the total runtime for executing the benchmark as
reported by the system.

If the system can report CPU time and real time (“wallclock time”), all three
values are CPU time. If the two differ a lot, the STATUS column contains a
warning. If only wallclock time is available, we take that. We use the external
measurements for the main comparison on the benchmarks, so these three
values are only interesting if one wants to see what fraction of the time is
spent on loading the data. Furthermore, startup time and time for compiling
the benchmark is not included in these data.

A New Benchmark Database and An Analysis of TC Runtimes 5

The following values are measured externally and should be comparable for
all systems that run as a single process:
• USER TIME: This is the CPU time the program spent in user mode.
• SYS TIME: This is the CPU time the program spent in kernel mode,

i.e. while executing operating system calls. Usually, this is small. The
sum of USER TIME and SYS TIME is the total CPU time the program
used for executing the benchmark.

• REAL TIME: This is the total wallclock time that the execution of the
benchmark took. For single-threaded programs, it is slightly longer than
the total CPU time used (e.g. when waiting for I/O). For multi-threaded
programs, it can be significantly less than the CPU time used (which is
added up over all threads).

• MEM: This is the “maximum resident set size” (in kilobytes), i.e. the “high
water mark” for the amount of memory a process uses and that is present
in real RAM (e.g., not swapped out). It includes shared libraries (as far
as actually used). In our previous paper [2] we checked that the amount
of memory used for only starting and immediately stopping the tested
systems is small compared to the memory used for actually executing
the benchmarks.

We also implemented a number of views to analyze the data. The generation of
tables in LATEX and HTML format is done by means of SQL queries. Our views
also help to check for outliers to get more confidence in the data. One can also
query for the best implementation variant of a benchmark for a system.

3 Transitive Closure Problem on Different Systems

In this section we describe the systems that we used in this work.
For comparability we decided on the transitive closure as our first problem

to benchmark the database systems on. The problem of finding the transitive
closure of a graph has been extensively studied and easily formulated for the
different database systems. The transitive closure is also one benchmark in the
OpenRuleBench collection [6]. There, the standard tail-recursive formulation is
chosen:

tc(X,Y) :- par(X,Y).

tc(X,Y) :- par(X,Z), tc(Z,Y).

“par” stands for “parent”, but it is simply the edge relation of the graph. The
nodes in the graph are integers, thus are large set of facts of the form par(1,2)

are given. We will discuss the test graphs in Section 4.

3.1 Prolog-Systems with Tabling

Since many of the test graphs are cyclic, a standard Prolog system would not
terminate with the above program. We need systems that support tabling to
detect repeated calls to the tc predicate.

6 Stefan Brass and Mario Wenzel

XSB Prolog version 3.8.0
XSB Prolog is a well-known deductive system [9] with a long experience in
efficiently implementing Prolog evaluation with tabling. We ran our tests loading
the data with load dync and enabled subsumtive tabling, and a trie index on
the par relation.

YAP Prolog version 6.2.2
YAP is a high performance Prolog compiler [5] that can be configured in a version
with tabling.

SWI Prolog version 7.7.15
SWI Prolog is a robust and scalable implementation of the Prolog language.
However, the support for tabling is very new, and declared as merely a first
prototype. As mentioned on the SWI Prolog web page, it cannot be considered
yet as a serious competitor to the above systems.

For the three systems above, we used the query “tc(,), fail.”. I.e. we back-
track over all solutions, but the (quite large) output is not actually written. Also
in OpenRuleBench, it is done in this way. However, our scripts also support
measuring the time with writing of the result in order to check that the correct
relation is computed, and the systems are not doing too big optimizations in the
main benchmark because the query result is not used.

3.2 Bottom-Up Evaluation, Datalog systems

Push-Method with Abstract Machine (BAM)
We developed the Push method for bottom-up evaluation of Datalog [1,3]. It uses
each derived fact immediately and can be seen as an extreme form of seminaive
evaluation that dates back to the PhD thesis of Heribert Schütz [10]. Whereas we
defined the method originally as a translation from Datalog to C++, we recently
developed an abstract machine “BAM” for bottom-up evaluation based on the
push method [4]. For the performance comparison, this is better, because the
other systems also interpret code of some abstract machine. The translation to
C++ would result in native machine code.

DataScript 0.16.6
DataScript is a Datalog query engine for JavaScript. We ran it on node.js 10.5.0.
Even though DataScript’s performance is severely lacking, it’s an example for a
benchmark on newer Datalog query engines akin to Datomic or Mozilla Mentat
(formerly Datomish).

DataScript accepts queries in extensible data notation (EDN). We had to
define the par relation as a relation with the multiplicity “many” and allowed
for an index on this relation. In EDN the query and the rules are defined in
the following way ($ is a forward-reference to the database and % is a forward-
reference to the rules):

A New Benchmark Database and An Analysis of TC Runtimes 7

[:find ?e1 ?e2 :in $ % :where (tc ?e1 ?e2)]

[[(tc ?e1 ?e2) [?e1 "par" ?e2]]

[(tc ?e1 ?e2) [?e1 "par" ?ex] (tc ?ex ?e2)]]

3.3 Relational Databases

Recursive view definitions were introduced in the SQL-99 standard. Most mod-
ern relational database systems support them, and therefore can compute the
transitive closure.

SQLite3 version 3.24.0
SQLite is a self-contained, public-domain, SQL database engine.

To improve performance, we used a temporary in-memory table for the par-
relation. We added an index on the second column.

PRAGMA temp_store = MEMORY;

CREATE TEMP TABLE par (

a INT NOT NULL, b INT NOT NULL,

CONSTRAINT par_pk PRIMARY KEY (a, b)

) WITHOUT ROWID;

CREATE INDEX par_fb ON par (b);

Without the temp store pragma, SQLite would use temporary files to evaluate
the recursive query, even though the input data is in a transient in-memory
database.

The query is (using a recursive “common table subexpression”, i.e. a local
view definition):

WITH RECURSIVE tc(a,b) AS (

SELECT par.a, par.b from par

UNION

SELECT par.a, tc.b from par JOIN tc ON par.b = tc.a

) SELECT Count(*) FROM tc;

3.4 Graph Databases / RDF Triple Stores

Apache Jena version 3.7.0
Apache Jena is a Java Framework for linked data that supports querying RDF
data via SPARQL. We ran Jena on OpenJDK 1.8 (Java 8) using Property Paths
for the queries. To allow for deeper recursions we increased the JVM’s thread
stack size to 16MB using the environment variable JVM ARGS=-Xss16m .

Graph databases and and RDF Triple Stores accept queries in the SPARQL
format. SPARQL does not allow for general recursion [8] but SPARQL 1.1 added
Property Paths [11] where non-variable predicates could be combined in a similar
fashion to regular expressions. This allows us to write this query in a concise
way:

SELECT (count(*) as ?resultcount) WHERE {?a :par+ ?b}

8 Stefan Brass and Mario Wenzel

3.5 Execution Methodology and Hardware

We executed the benchmarks on a HP Blade server with two Intel Xeon CPUs
E5-2630 v4@2.20GHz with 10 cores and 20 threads each. However, the current
version of our program “BAM” does not use multiple threads (we are currently
working on this). A Java program (such as Jena) always uses multithreading at
least for garbage collection. The machine has 64 GB of RAM. The operating
system is Debian x86_64 GNU/Linux 8.10 (3.16.0).

The overall execution time (“elapsed wall clock time” and CPU time) and
the memory (“maximum resident set size”) for each test was measured with the
Linux /usr/bin/time program. The time for loading the data and for executing
the query are measured by functions of each system (as far as possible).

Most tests were run ten times and the time average values were calculated. We
also checked for outliers, where the real time was much higher than the average.
A few times in more than 5000 measurements, it seemed that the system was
locked up for two minutes. The CPU time was normal, but the real time was
unusally high. This occurred all on the same day. We repeated the measurements
of that day.

In the comparison table (Fig. 2 below), we use real time. We believe that
parallel execution should be honoured (there, CPU time is higher than real time).
Apache Jena used on average 215% CPU (i.e. two parallel threads), DataScript
used 133% CPU. For all other systems, the average CPU utilization was 97% to
100%, i.e. there was no big difference between real time and CPU time. However,
there were a few measurements with only 50% CPU for XSB. These were very
small benchmarks (waiting on the disk might explain the low CPU utilization).

4 Test Graphs

4.1 Random Graphs from the OpenRuleBench collection

The OpenRuleBench collection [6] uses a particular algorithm to generate ran-
dom graphs that avoids a duplicate check for already selected edges. The domain
d = {1, . . . , n} is copied into separate lists a and b which are both extended with
a special symbol ◦ so that their lengths are coprime, and then shuffled. A random
graph contains edges from (a(i mod |a|), b(i mod |b|)) where neither component is
◦. Selecting e tuples in order with increasing i (no larger than |a| ∗ |b|) leads to
all vertexes having nearly identical degrees, compared to just selecting edges at
random. Cyclic graphs generated in this manner are usually strongly connected,
even with low average node degree (about 1.5).

Additionally, the OpenRuleBench scripts generate graphs that are marked
“nocyc” (non-cyclic). This is done by ordering the edges towards the greater
node. Since this happens after the edges have already been selected, it leads to
duplicate edges in the generated non-cyclic graphs. Furthermore, reflexive edges
(loops) were not excluded in the settings of the distributed scripts.

We have rewritten the graph generation in the same spirit but for acyclic
graphs we skipped reflexive edges and added a duplicate check in order to gen-
erate the correct amount of unique edges.

A New Benchmark Database and An Analysis of TC Runtimes 9

The cyclic and non-cyclic graphs are named Un,e and Fn,e respectively (where
n is the number of nodes, and e is the number of edges). The motivation for the
letter U is the quite “uniform” degree, and F is the same with only “forward”
edges. The parameter values for the test graphs are listed in Figure 1.

4.2 Additional Deterministic Graphs

Additionally, we created generators for graphs with properties that are easily
analyzed in the context of the transitive closure problem. The number of edges
in the graph is the input size of the problem. The transitive closure than com-
putes the connected node pairs, i.e. the “reachability” relation. The diameter of
the connected subgraphs is the maximum over the length of the shortest paths
between any two connected nodes. This is the number of iterations until the
fixed point of the Tp operator is found. We label nodes incrementally starting
from 1.

– The complete graph Kn has n vertices and the diameter 1. The graphs are
their own transitive closure with n2 edges.

– The maximum acyclic graph An has n vertices and is a subset of Kn without
the edges (a, b) with a ≥ b. The family of graphs have the diameter 1 and

the graphs themselves are their own transitive closure with n(n−1)
2 edges.

– The cycle graph Cn has n vertices and the diameter n. Its transitive closure
is the complete graph Kn.

– The directed short-circuited cycle graph is a directed graph Sn,m, where
n is divisible by m + 1, that is a superset of the directed cycle graph Cn

where m > 0 additional edges per vertex are added, skipping n
m+1 nodes

in the cycle. The diameter of the graph is n
m+1 . The transitive closure of

that family of graphs is the complete graph Kn. We give the set of edges
E = {(i, (i+ nt

m+1) mod n)|t = 1, . . . ,m∧ i = 1, . . . , n}∪Cn. One additional

edge per vertex allows skipping 1
2 of the circle, while two additional edges

would allow skipping 1
3 or 2

3 of the circle.
– The graph Pn is a directed graph with n vertices that is the path containing

the edges E = {(i, i + 1)|i = 1, . . . , n − 1}. The diameter is n − 1. The
transitive closure of the path Pn is An.

– The multi-path graph Mn,m is a directed graph that contains n vertices and
m pairwise vertex-disjoint paths of length n

m−1. This is also the diameter of
the connected subgraphs. The set of edges is E = {(i, i+m)|i = 1, . . . , n−m}.
The transitive closure of that family of graphs has n

2 (n
m − 1) edges.

– The binary tree graph Bh of height h > 0 is a directed graph that contains
2h − 1 vertices and 2h − 2 edges. The diameter of that graph is h − 1. The
transitive closure of that family of graphs has

∑h−1
i=1 i2i = (h − 2) ∗ 2h + 2

edges. The set of edges is E = {(i, 2i), (i, 2i + 1)|i = 1, . . . , 2h−2 − 1}.

4.3 Cost Measure for Processing Time

Calculating the transitive closure of a graph takes time. We want to associate
a given problem instance with some sort of cost in order to estimate how much

10 Stefan Brass and Mario Wenzel

Graph Nodes Edges In-Degree Out-Deg. Cyc. TC Size Iter. Comp. Cost

k 1k 1000 1000000 1000–1000 1000–1000 yes 1000000 1 1001000000
k 2k 2000 4000000 2000–2000 2000–2000 yes 4000000 1 8004000000

a 1k 1000 499500 0–999 0–999 no 499500 1 166666500
a 2k 2000 1999000 0–1999 0–1999 no 1999000 1 1333333000

c 1k 1000 1000 1–1 1–1 yes 1000000 1000 1001000
c 2k 2000 2000 1–1 1–1 yes 4000000 2000 4002000
c 4k 4000 4000 1–1 1–1 yes 16000000 4000 16004000

s 2k 1 2000 4000 2–2 2–2 yes 4000000 1000 8004000
s 2k 2 2000 6000 3–3 3–3 yes 4000000 288 12006000
s 2k 3 2000 8000 4–4 4–4 yes 4000000 500 16008000
s 2k 4 2000 10000 5–5 5–5 yes 4000000 400 20010000

p 1k 1000 999 0–1 0–1 no 499500 999 499500
p 2k 2000 1999 0–1 0–1 no 1999000 1999 1999000
p 4k 4000 3999 0–1 0–1 no 7998000 3999 7998000

m 4ki 2 8192 8190 0–1 0–1 no 16773120 4095 16773120
m 1ki 8 8192 8184 0–1 0–1 no 4190208 1023 4190208
m 256 32 8192 8160 0–1 0–1 no 1044480 255 1044480
m 64 128 8192 8064 0–1 0–1 no 258048 63 258048
m 16 512 8192 7680 0–1 0–1 no 61440 15 61440
m 4 2ki 8192 6144 0–1 0–1 no 12288 3 12288

b 17 131071 131070 0–1 0–2 no 1966082 16 1966082
b 18 262143 262142 0–1 0–2 no 4194306 17 4194306
b 19 524287 524286 0–1 0–2 no 8912898 18 8912898

u 1k 50k 1000 50000 47–51 46–51 yes 1000000 3 50050000
u 1k 125k 1000 125000 122–127 122–127 yes 1000000 2 125125000
u 1k 250k 1000 250000 248–251 248–251 yes 1000000 2 250250000
u 2k 250k 2000 200000 98–101 98–101 yes 4000000 3 400200000
u 2k 500k 2000 500000 248–251 248–251 yes 4000000 2 1000500000
u 2k 1m 2000 1000000 499–502 499–502 yes 4000000 2 2001000000

f 1k 50k 1000 50000 0–101 0–101 no 472863 8 15421338
f 1k 125k 1000 125000 0–251 0–251 no 492170 5 40705777
f 1k 250k 1000 250000 0–500 0–501 no 497810 5 83073458
f 2k 250k 2000 200000 0–201 0–201 no 1946015 8 128081155
f 2k 500k 2000 500000 0–500 0–500 no 1985377 6 330379789
f 2k 1m 2000 1000000 0–1000 0–1001 no 1995412 4 665127921

Fig. 1. Data of the Test Graphs

A New Benchmark Database and An Analysis of TC Runtimes 11

time solving the problem will roughly take. The cost measure is independent of
any actual implementation but corresponds to an abstract evaluation scheme.

Such a cost measure is an independent reference point for the problem size.
Without such a cost measure, the runtimes of a system for different graphs would
just be single numbers.

As a simple first try, we take the number of applicable rule instances, i.e. the
number of rule instances where all body literals are contained in the minimal
Herbrand model. This corresponds to the number of rule instances that the TP

operator will apply. Seminaive evaluation requires that each such rule instance
is considered only once.

As an example, consider the complete graph K1000 with 1000 vertices and
1000 000 edges. The (non-recursive) starting rule

tc(X,Y) :- par(X,Y)

is applicable 1000 000 times (once for each of the input facts). For the rule

tc(X,Z) :- par(X,Y), tc(Y,Z)

there are 1000 000 facts in the par relation and each one has 1000 join part-
ners in the tc relation. Thus the total size of the join par(X,Y), tc(Y,Z) is
1000 000 000. Of course, in this example, the second rule generates only dupli-
cates, but they must be computed and eliminated. The associated costs for the
rules are added and we get a final cost of 1001 000 000.

Note that this cost measure is purely declarative, and does not look at the
sequence in which facts are computed. For the applicable rule instances, we only
need the final version of the tc-relation in the minimal model.

This simple cost measure does not include non-successful join operations,
or the actual number or size of arguments. Also the reading of the input data
files is not explicitly considered, but for the transitive closure program, the cost
of the first rule is the input size. However, one could consider different weights.
Furthermore, many data structures for looking up tuples have runtime O(log(n)).

For the practical approach we used PostgreSQL to check the test graphs by
means of SQL queries on the par relation. The results are shown in Figure 1.
The associated computation cost measure for the problem of the given size is
listed in the last column.

Contrary to previous work [7], the number of iterations seems to have little
or even no impact on the cost compared to the other factors in our cost measure.
As we can see from the examples, a single large join can be much more costly
than a large number of smaller joins. This is also reflected in the actual runtimes
for most systems (comparing C1k to K1k).

In Section 5, we will investigate the relationship between this cost measure
and the actual runtimes of various systems.

4.4 Cost Measure for Memory Usage

For memory usage, we simply take the number of facts in the minimal model as
cost measure. For the transitive closure, this is the sum of the size of the par

12 Stefan Brass and Mario Wenzel

relation and the size of the tc relation. For the complete graph K1000, the result
is 2000 000. Simple solutions for duplicate elimination will keep all derived facts
in memory, so this cost measure seems quite reasonable.

5 Analysis of the Results

5.1 Runtime Results

The average runtimes of the main systems for the various test graphs are shown
in Fig. 2. We also give the factor compared to our own BAM prototype. E.g. a
factor of 2 would mean that the system needs double as much time for computing
the transitive closure of the graph.

Figure 3 shows the relation between the runtime and the cost measure for the
graphs. Basically, for many systems the relationship between our cost measure
and the runtime seems to be more or less linear. We were very positively surprised
when we saw the graphs e.g. for XSB for the first time. At least, this shows that
the cost measure is quite well correlated with the runtime.

However, in pure numbers it does not look quite as nice. We define the av-
erage processing speed of a system as the average processed cost over time. If a
database system solves a problem that has an associated cost of 1000 in 10 sec-
onds, the speed is 100 cost

s (i.e. rule instances per second). To estimate runtimes
we would like our cost measure to have a linear relation to the actual runtimes.
For a perfect cost measure, the ratio of cost and runtime would be constant.
However, we see already from Figure 2 that the factors between different sys-
tems vary between the graphs. So there cannot be a cost measure that uses only
properties of the graph and completely accurately predicts the runtime with a
fixed “processing speed” for each system. Figure 4 shows the resulting speed
value for a selection of the input graphs.

For lower runtimes and cost measures the results vary widely, as might be
expected. The speed is in general lower because it takes some time to start up,
analyze and optimize the query, create caches, and so on. In particular, for Jena
even a small graph takes 2 seconds. For larger inputs, the speed values do not
vary so much. If one wants to reduce all the measurements to a single number
for each system, an average speed still might be useful first indicator. Of course,
this is a “lossy compression”. The average over all graphs is shown in Figure 5.

From the speed and the cost measure of the input graph, one can compute
an estimate for the runtime (cost divided by speed). If one tries to minimize
the number of cases where the error is more than 2s and more than 20% of
the estimate, the average time might not be the best choice. We used the speed
values shown in the second row of Figure 5 (the result of “manual optimization”
with the total error of the limit violations as secondary optimization goal). For
XSB, the estimate was outside the limits only for 4 (out of 35) graphs (and not
very far outside). Thus, the XSB runtime is quite well predictable from our cost
measure. For BAM, there are 6 errors. For other programs, the estimation does
not work well. In case of Jena, the estimation formula probably should consider
the large startup time of the JVM.

A New Benchmark Database and An Analysis of TC Runtimes 13

Graph BAM XSB [Factor] YAP [Factor] Jena [Factor] SQLite [Factor]

k 1k 32.291 103.074 3.2 70.120 2.2 180.557 5.6 595.849 18.5
k 2k 363.309 810.679 2.2 552.711 1.5 1477.700 4.1 4983.400 13.7
a 1k 10.595 16.272 1.5 12.660 1.2 34.982 3.3 95.443 9.0
a 2k 130.801 127.694 1.0 122.537 0.9 255.690 2.0 811.345 6.2
c 1k 0.137 0.574 4.2 0.496 3.6 3.738 27.3 1.999 14.6
c 2k 0.449 1.514 3.4 2.110 4.7 8.098 18.0 7.816 17.4
c 4k 2.948 5.511 1.9 9.628 3.3 23.023 7.8 31.396 10.6
s 2k 1 0.554 1.765 3.2 3.090 5.6 9.347 16.9 9.900 17.9
s 2k 2 0.660 2.054 3.1 4.137 6.3 10.071 15.3 12.311 18.7
s 2k 3 0.804 2.337 2.9 4.607 5.7 10.615 13.2 14.030 17.5
s 2k 4 0.947 2.595 2.7 6.108 6.4 11.367 12.0 15.947 16.8
p 1k 0.081 0.344 4.2 0.184 2.3 2.885 35.6 0.998 12.3
p 2k 0.188 0.939 5.0 1.015 5.4 5.370 28.6 3.740 19.9
p 4k 0.758 3.055 4.0 4.341 5.7 13.797 18.2 15.016 19.8
m 4ki 2 3.656 6.167 1.7 9.240 2.5 24.628 6.7 32.829 9.0
m 1ki 8 0.331 1.833 5.5 2.149 6.5 8.954 27.1 7.688 23.2
m 256 32 0.126 0.726 5.8 0.691 5.5 3.978 31.6 1.920 15.2
m 64 128 0.110 0.240 2.2 0.193 1.8 2.663 24.2 0.629 5.7
m 16 512 0.010 0.130 13.0 0.057 5.7 2.290 229.0 0.206 20.6
m 4 2ki 0.000 0.106 0.047 2.065 0.113
b 17 0.471 1.144 2.4 1.058 2.2 8.082 17.2 3.957 8.4
b 18 1.832 1.989 1.1 2.496 1.4 14.817 8.1 8.119 4.4
b 19 8.590 4.016 0.5 4.587 0.5 31.808 3.7 17.402 2.0
u 1k 50k 1.914 5.230 2.7 12.394 6.5 13.711 7.2 33.188 17.3
u 1k 125k 5.284 12.440 2.4 30.228 5.7 26.976 5.1 79.150 15.0
u 1k 250k 11.025 24.609 2.2 53.183 4.8 50.019 4.5 155.578 14.1
u 2k 250k 17.155 40.852 2.4 114.367 6.7 85.051 5.0 286.996 16.7
u 2k 500k 39.972 98.343 2.5 291.672 7.3 197.237 4.9 676.669 16.9
u 2k 1m 83.816 194.181 2.3 515.968 6.2 371.938 4.4 1303.429 15.6
f 1k 50k 0.710 1.825 2.6 2.442 3.4 6.631 9.3 9.727 13.7
f 1k 125k 1.867 4.118 2.2 7.084 3.8 11.791 6.3 24.343 13.0
f 1k 250k 3.623 8.390 2.3 17.066 4.7 20.468 5.6 48.579 13.4
f 2k 250k 6.536 12.854 2.0 17.031 2.6 31.899 4.9 85.702 13.1
f 2k 500k 16.727 32.402 1.9 55.599 3.3 72.170 4.3 213.121 12.7
f 2k 1m 34.841 65.082 1.9 142.702 4.1 138.465 4.0 417.273 12.0

Fig. 2. Run Time (Real Time in s) for TCFF Benchmark, Factor compared with BAM

14 Stefan Brass and Mario Wenzel

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·109

0

100

200

300

400

500

600

processing cost measure

ti
m

e
in

s

xsb
yap

SWI

jena

SQLite3

BAM
0 2 4

·106

0

2

4

6

8

Fig. 3. Time vs cost measure

instance p 2k c 2k b 18 s m u 1k f 2k a 1k f 2k u 2k f 2k k 1k k 2k
2k 2 4ki 2 50k 250k 500k 250k 1m

cost in 106 2 4 4 12 17 50 128 167 330 400 665 1001 8004

BAM 10.63 8.91 2.29 18.19 4.59 26.15 19.60 15.73 19.75 23.33 19.09 31.00 22.03
XSB 2.13 2.64 2.11 5.85 2.72 9.57 9.96 10.24 10.20 9.80 10.22 9.71 9.87
YAP 1.97 1.90 1.68 2.90 1.82 4.04 7.52 13.17 5.94 3.50 4.66 14.28 14.48
SWI 0.52 0.51 0.32 0.62 0.69 0.56 0.54 0.47 0.59 0.47 0.51 0.50
Jena 0.37 0.49 0.28 1.19 0.68 3.65 4.02 4.76 4.58 4.71 4.80 5.54 5.42

SQLite3 0.53 0.51 0.52 0.98 0.51 1.51 1.49 1.75 1.55 1.39 1.59 1.68 1.61
DataScript 0.0004 0.0004 0.0259

Fig. 4. System speed for selected graphs (106 rule instances/s)

System BAM XSB YAP Jena SQLite

Avg. Speed (106 rule inst./s) 15.08 6.04 4.27 2.37 1.05

Speed for runtime estimation 19.90 8.31 4.13 4.41 1.39

Estimation errors (from 35) 6 4 11 22 12

Fig. 5. Average speed over all measured graphs, Runtime estimation

A New Benchmark Database and An Analysis of TC Runtimes 15

5.2 Memory Estimation

As we can see from Figure 6, our memory cost measure (number of facts) seems
to have a relatively good correlation to the actually used memory for some
systems.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·107

0

500

1,000

1,500

2,000

memory cost measure

m
em

o
ry

in
M

B

xsb
yap

SQLite3

BAM

Fig. 6. Memory vs Memory Cost Measure

For Jena and SWI-Prolog, the memory cost measure does not seem to work
well, therefore we removed them from the graph. In case of Jena, the memory
management of the JVM with a garbage collector running at undefined times
could explain the problems.

5.3 Additional Observations

The two problems K1k (complete graph with 1000 edges) and U2k,500k (random
graph with 2000 vertices and 500000 edges) have nearly identical cost (about
109) but for all systems the complete graph, with fewer vertices but more edges,
was a bit faster to calculate than the cost measure would have suggested.

While the SPARQL query for Jena was quite expressive, the implementation
for Property Paths was a problem for us. With the default settings we quickly
had a stack overflow in the Java Virtual Machine for graphs that had a diameter
of more than 2000. We changed some memory settings of the JVM to try to
mitigate this problem.

DataScript was incredibly slow and often ran out of memory. Some bench-
marks ran up to 40 hours when we terminated them. In the future we want to
try smaller graphs to see whether our cost measure holds for problem sizes that
are easier to handle for DataScript.

16 Stefan Brass and Mario Wenzel

6 Conclusions

The source code, data files and single benchmarking results are available at

[http://dbs.informatik.uni-halle.de/rbench/]

We are working on integrating other systems (e.g., PostgreSQL and Soufflé) and
more benchmarks into our scripts.

References

1. Brass, S., Stephan, H.: Bottom-up evaluation of Datalog: Preliminary report. In:
Schwarz, S., Voigtländer, J. (eds.) Proc. WLP’15/’16/WFLP’16. pp. 13–26. No.
234 in EPTCS, Open Publishing Association (2017), https://arxiv.org/abs/

1701.00623
2. Brass, S., Stephan, H.: Experiences with some benchmarks for deductive databases

and implementations of bottom-up evaluation. In: Schwarz, S., Voigtländer, J.
(eds.) Proc. WLP’15/’16/WFLP’16. pp. 57–72. No. 234 in EPTCS, Open Publish-
ing Association (2017), https://arxiv.org/abs/1701.00627

3. Brass, S., Stephan, H.: Pipelined bottom-up evaluation of Datalog: The Push
method. In: Petrenko, A.K., Voronkov, A. (eds.) Perspectives of System Informatics
(PSI’17). LNCS, vol. 10742, pp. 43–58. Springer (2018), http://www.informatik.
uni-halle.de/~brass/push/publ/psi17.pdf

4. Brass, S., Wenzel, M.: An abstract machine for Push bottom-up evaluation of
Datalog. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R.
(eds.) Database and Expert Systems Applications, 29th International Conference,
DEXA 2018, Proceedings, Part II. LNCS, vol. 11030, pp. 270–280. Springer (2018)

5. Costa, V.S., Rocha, R., Damas, L.: The YAP Prolog system. Theory and Practice of
Logic Programming 12(1–2), 5–34 (2012), https://www.dcc.fc.up.pt/~ricroc/
homepage/publications/2012-TPLP.pdf

6. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An analysis of the per-
formance of rule engines. In: Proceedings of the 18th International Conference
on World Wide Web (WWW’09). pp. 601–610. ACM (2009), http://rulebench.
projects.semwebcentral.org/

7. Przymus, P., Boniewicz, A., Burzańska, M., Stencel, K.: Recursive query facilities
in relational databases: A survey. In: Zhang, Y., Cuzzocrea, A., Ma, J., Chung,
K., Arslan, T., Song, X. (eds.) Database Theory and Application, Bio-Science
and Bio-Technology (DTA/BSBT 2010). pp. 89–99. No. 118 in Communications
in Computer and Information Science, Springer (2010), http://www-users.mat.
umk.pl/~eror/papers/dta-2010.pdf

8. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., et al.
(eds.) The Semantic Web — ISWC 2015, 14th International Semantic Web Con-
ference, Proceedings, Part I. LNCS, vol. 9366, pp. 19–35. Springer (2015)

9. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database
engine. In: Snodgrass, R.T., Winslett, M. (eds.) Proc. of the 1994 ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’94). pp. 442–453 (1994),
http://user.it.uu.se/~kostis/Papers/xsbddb.html

10. Schütz, H.: Tupelweise Bottom-up-Auswertung von Logikprogrammen (Tuple-wise
bottom-up evaluation of logic programs). Ph.D. thesis, TU München (1993)

11. SPARQL 1.1 Query Language, W3C Recommendation (March 2013), http://www.
w3.org/TR/sparql11-query/

http://dbs.informatik.uni-halle.de/rbench/
https://arxiv.org/abs/1701.00623
https://arxiv.org/abs/1701.00623
https://arxiv.org/abs/1701.00627
http://www.informatik.uni-halle.de/~brass/push/publ/psi17.pdf
http://www.informatik.uni-halle.de/~brass/push/publ/psi17.pdf
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
http://rulebench.projects.semwebcentral.org/
http://rulebench.projects.semwebcentral.org/
http://www-users.mat.umk.pl/~eror/papers/dta-2010.pdf
http://www-users.mat.umk.pl/~eror/papers/dta-2010.pdf
http://user.it.uu.se/~kostis/Papers/xsbddb.html
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

	A New Benchmark Database and An Analysis of Transitive Closure Runtimes

